How to Design Programs

An Introduction to Computing and Programming

Matthias Felleisen
Robert Bruce Findler
Matthew Flatt
Shriram Krishnamurthi

The Mlﬁ Press
Cambridge, Massachusetts
. London, England

Book Description ‘
This introduction to programmlng places computer science in the core of a liberal arts education.
Unlike other introductory b oks, it focuses on the program design process. This approach fosters
a variety of skills--criti nalytlcal thinking, creative synthesis, and attention to detail-
-that are important for everyone notjust future computer programmers.

The book exposes readers to two fundamentally new ideas. First, it presents program design
guidelines that show the reader how to analyze a problem statement; how to formulate concise
goals; how to make up examples; how to develop an outline of the solution, based on the analysis;
how to finish the program; and how to test. Each step produces a well-defined intermediate
product. Second, the book comes with a novel programming environment, the first one explicitly
designed for beginners. The environment grows with the readers as they master the material in
the book until it supports a full-fledged language for the whole spectrum of programming tasks.

All the book's support materials are available for free on the Web. The Web site includes the
environment, teacher guides, exercises for all levels, solutions, and additional projects.

X -
FlyHeart.com

TEAM FLY PRESENTS



Contents

Preface

Why Everyone Should Learn to Program
Design Recipes

The Choice of Scheme and DrScheme
The Parts of the Book
Acknowledgments

I Processing Simple Forms of Data

1

Students, Teachers, and Computers

2

Numbers, Expressions, Simple Programs

2.1 Numbers and Arithmetic
2.2 Variables and Programs
2.3 Word Problems

2.4 Errors

2.5 Designing Programs

Programs are Function Plus Variable Deﬁmtlons
3.1 Composing Functions \
3.2 Variable Definitions AN
3.3 Finger Exercises on Composmg Functmhs \

Conditional Expressions and Functums
4.1 Booleans and Relanons PN

4.2 Functions that Test Condltlons

4.3 Conditionals and Condmtlonal Functions
4.4 Designing Condl’thnal Functions

Symbolic Information

5.1 Finger Exercises with Symbols

Compound Data, Part 1: Structures

6.1 Structures

6.2 Extended Exercise: Drawing Simple Pictures

6.3 Structure Definitions

6.4 Data Definitions

6.5 Designing Functions for Compound Data

6.6 Extended Exercise: Moving Circles and Rectangles
6.7 Extended Exercise: Hangman

The Varieties of Data

7.1 Mixing and Distinguishing Data
7.2 Designing Functions for Mixed Data
7.3 Composing Functions, Revisited

— >
FlyHeart.com

TEAM FLY PRESENTS




7.4 Extended Exercise: Moving Shapes
7.5 Input Errors

8 Intermezzo 1: Syntax and Semantics
8.2 The Scheme Vocabulary
8.3 The Scheme Grammar
8.4 The Meaning of Scheme
8.5 Errors
8.6 Boolean Expressions
8.7 Variable Definitions
8.8 Structure Definitions

II Processing Arbitrarily Large Data

9 Compound Data, Part 2: Lists
9.1 Lists
9.2 Data Definitions for Lists of Arbitrary Length
9.3 Processing Lists of Arbitrary Length
9.4 Designing Functions for Self-Referential Data Definitions
9.5 More on Processing Simple Lists

10_More on Processing Lists
10.1 Functions that Produce Lists
10.2 Lists that Contain Structures
10.3 Extended Exercise: Moving Pictures

N\ \
\\\ \

11 Natural Numbers
11.1 Defining Natural Numbers
11.2 Processing Natural Numbers of Arbrtrary Size
11.3 Extended Exerelse Creatmg Llsts Testing Functions
11.4 Alternative Data Deﬁmt}ons for Natural Numbers
11.5 More on the Nature of Natural Numbers

12 Composing F unctlons, Revisited Again
12.1 Designing Complex Programs
12.2 Recursive Auxiliary Functions
12.3 Generalizing Problems, Generalizing Functions
12.4 Extended Exercise: Rearranging Words

13 Intermezzo 2: List Abbreviations

III More on Processing Arbitrarily Large Data

14 More Self-referential Data Definitions
14.1 Structures in Structures
14.2 Extended Exercise: Binary Search Trees
14.3 Lists in Lists
14.4 Extended Exercise: Evaluating Scheme

= _—
FlyHeart.com

TEAM FLY PRESENTS



15 Mutually Referential Data Definitions
15.1 Lists of Structures, Lists in Structures
15.2 Designing Functions for Mutually Referential Definitions
15.3 Extended Exercise: More on Web Pages

16 Development through Iterative Refinement
16.1 Data Analysis
16.2 Defining Data Classes and Refining Them
16.3 Refining Functions and Programs

17 Processing Two Complex Pieces of Data
17.1 Processing Two Lists Simultaneously: Case 1
17.2 Processing Two Lists Simultaneously: Case 2
17.3 Processing Two Lists Simultaneously: Case 3
17.4 Function Simplification
17.5 Designing Functions that Consume Two Complex Inputs
17.6 Exercises on Processing Two Complex Inputs
17.7 Extended Exercise: Evaluating Scheme, Part 2
17.8 Equality and Testing

18 Intermezzo 3: Local Definitions and Lexical Scope
18.2 Organizing Programs with local

Syntax of local

Semantics of local

Pragmatics of local, Part 1

Pragmatics of local, Part 2

Pragmatics of local, Part 3

IV_Abstracting Desigﬁf// :

19 Similarities in Definitions
19.1 Similarities in Functions
19.2 Similarities in Data Definitions

20 Functions are Values
20.1 Syntax and Semantics
20.2 Contracts for Abstract and Polymorphic Functions

21 Designing Abstractions from Examples
21.1 Abstracting from Examples
21.2 Finger Exercises with Abstract List Functions
21.3 Abstraction and a Single Point of Control
21.4 Extended Exercise: Moving Pictures, Again
21.5 Note: Designing Abstractions from Templates

22 Designing Abstractions with First-Class Functions
22.1 Functions that Produce Functions
22.2 Designing Abstractions with Functions-as-Values
22.3 A First Look at Graphical User Interfaces

= _—
FlyHeart.com

TEAM FLY PRESENTS




23 Mathematical Examples
23.1 Sequences and Series
23.2 Arithmetic Sequences and Series
23.3 Geometric Sequences and Series
Taylor Series
23.4 The Area Under a Function
23.5 The Slope of a Function

24 Intermezzo 4: Defining Functions on the Fly
Syntax of lambda
Scope and Semantics of lambda
Pragmatics of lambda

V Generative Recursion

25 A New Form of Recursion
25.1 Modeling a Ball on a Table
25.2 Sorting Quickly

26 Designing Algorithms
26.1 Termination
26.2 Structural versus Generative Recursion
26.3 Making Choices

27 Variations on a Theme
27.1 Fractals NN
27.2 From Files to Lines, from LlStS to Llstsx)ﬁ Llsl’s
27.3 Binary Search O \

27.4 Newton's Method: - \

27.5 Extended Ex/erelse G V"/V’s/szyia}n\\ﬁlimination

28 Algorithms that Backtrack
28.1 Traversing Graphs
28.2 Extended Exercise: Checking (on) Queens

29 Intermezzo 5: The Cost of Computing and Vectors
29.2 Concrete Time, Abstract Time
29.3 The Definition of *‘on the Order of"
29.4 A First Look at Vectors

VI Accumulating Knowledge

30 The Loss of Knowledge
30.1 A Problem with Structural Processing
30.2 A Problem with Generative Recursion

31 Designing Accumulator-Style Functions
31.1 Recognizing the Need for an Accumulator
31.2 Accumulator-Style Functions
31.3 Transforming Functions into Accumulator-Style

= _—
FlyHeart.com

TEAM FLY PRESENTS



32 More Uses of Accumulation
32.1 Extended Exercise: Accumulators on Trees
32.2 Extended Exercise: Missionaries and Cannibals
32.3 Extended Exercise: Board Solitaire

33 Intermezzo 6: The Nature of Inexact Numbers
33.2 Fixed-size Number Arithmetic
33.3 Overflow
33.4 Underflow
33.5 DrScheme's Numbers

VII Changing the State of Variables

34 Memory for Functions

35 Assignment to Variables
35.1 Simple Assignments at Work
35.2 Sequencing Expression Evaluations
35.3 Assignments and Functions
35.4 A First Useful Example

36 _Designing Functions with Memory
36.1 The Need for Memory
36.2 Memory and State Variables
36.3 Functions that Initialize Memory PN
36.4 Functions that Change Mem/QrV RN

37 Examples of Memorv Usage
37.1 Initializing State <~ -
37.2 State Changes. from User Interactlons
37.3 State Changes from Recursmn
37.4 Finger Exercises on State Changes
37.5 Extended Exercise: Exploring Places

38 Intermezzo 7: The Final Syntax and Semantics
38.2 The Vocabulary of Advanced Scheme
38.3 The Grammar of Advanced Scheme
38.4 The Meaning of Advanced Scheme
38.5 Errors in Advanced Scheme

VIII Changing Compound Values

39 Encapsulation
39.1 Abstracting with State Variables
39.2 Practice with Encapsulation

40 Mutable Structures
40.1 Structures from Functions
40.2 Mutable Functional Structures
40.3 Mutable Structures

= _—
FlyHeart.com

TEAM FLY PRESENTS



40.4 Mutable Vectors
40.5 Changing Variables, Changing Structures

41 Designing Functions that Change Structures
41.1 Why Mutate Structures
41.2 Structural Design Recipes and Mutation, Part 1
41.3 Structural Design Recipes and Mutation, Part 2
41.4 Extended Exercise: Moving Pictures, a Last Time

42 Equality
42.1 Extensional Equality

42.2 Intensional Equality

43 Changing Structures, Vectors, and Objects
43.1 More Practice with Vectors
43.2 Collections of Structures with Cycles
43.3 Backtracking with State

Epilogue
Computing
Programming
Moving On

Index

= _—
FlyHeart.com

TEAM FLY PRESENTS




Preface

1t goes against the grain of modern education to teach
children to program. What fun is there in making plans,
acquiring discipline in organizing thoughts, devoting
attention to detail and learning to be self-critical?

-- Alan Perlis, Epigrams in Programming

Many professions require some form of computer programming. Accountants program
spreadsheets and word processors; photographers program photo editors; musicians program
synthesizers; and professional programmers instruct plain computers. Programming has become
a required skill.

Yet programming is more than just a vocational skill. Indeed, good programming is a fun
activity, a creative outlet, and a way to express abstract ideas in a tangible form. And designing
programs teaches a variety of skills that are important in all kinds of proquﬂsions: critical reading,
analytical thinking, creative synthesis, and attention to detail. | ‘w

We therefore believe that the study of program design deservesthe same é‘éﬁtral role in general

\alytlcal skllls as mathematlcs But, unlike
kpproach to learmng Interactmg with software

program design teaches the samé anzﬂy‘ucal reading and writing skills as Enghsh Even the
smallest programming tasks{‘,,are formulated as word problems. Without critical reading skills, a
student cannot design programs that match the specification. Conversely, good program design
methods force a student to articulate thoughts about programs in proper English.
The Design Recipe for Functions

Problem Analysis & Data Definition

Contract, Purpose & Effect Statements, Header

Examples

Function Template

Function Definition

Tests

Figure 1: The basic steps of a program design recipe

This book is the first book on programming as the core subject of a liberal arts education. Its
main focus is the design process that leads from problem statements to well-organized solutions;

-8-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



it deemphasizes the study of programming language details, algorithmic minutiae, and specific
application domains. Our desire to focus on the design process requires two radical innovations
for introductory courses. The first innovation is a set of explicit design guidelines. Existing
curricula tend to provide vague and ill-defined suggestions, such as *“design from top to bottom"
or “'make the program structural." We have instead developed design guidelines that lead
students from a problem statement to a computational solution in step-by-step fashion with well-
defined intermediate products. In the process they learn to read, to analyze, to organize, to
experiment, to think in a systematic manner. The second innovation is a radically new
programming environment. In the past, texts on programming ignored the role of the
programming environment in the learning process; they simply assumed that students had access
to a professional environment. This book provides a programming environment for beginners. It
also grows with the students as they master more and more of the material until it supports a full-
fledged language for the whole spectrum of programming tasks: large-scale programming as well
as scripting.

Our guidelines are formulated as a number of program design recipes." A design recipe guides a
beginning programmer through the entire problem-solving process. With design recipes, a
beginner almost never again stares at a blank piece of paper or a blank computer screen. Instead,
the student will check the design recipe and use the question-and-answer guldehnes to make
some progress. s |

We created the design recipes by identifying categories of problems The 1dent1ﬁcat10n ofa
problem category is based on the classes of data that are;jused tc represent the relevant
information. Starting from the structure of this class de: “ ription students derive the programs
with a checklist. Figure 1 shows the basic six steps of d 'ign recipe checklist. Each step
produces a well-defined intermediate produ ; \

the transformation' of the template into a complete definition; and
the discovery of errors through testing.

e

The major difference concerns the relationship of steps 1 and 4.

Design recipes help beginners and teachers alike. Teachers can use the recipes to inspect a
beginner's problem-solving skills, to diagnose weaknesses, and to suggest specific remedial steps.
After all, each stage of the design recipe yields a well-defined, checkable product. If a beginner

is stuck, a teacher can inspect the intermediate products and determine what the problem is.
Based on this analysis, the teacher can then provide guidance for a specific step in the recipe,
raise appropriate questions, and recommend additional practice exercises.

Why Everyone Should Learn to Program

And as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



-- Shakespeare, A Midsummer Night's Dream V(i)

Our claim that everyone programs or should learn to program might appear strange considering
that, at first glance, fewer and fewer people seem to program these days. Instead, the majority of
people use application packages, which don't seem to require any programming. Even
programmers use = program generators," packages that create programs from, say, business rules.
So why should anyone learn to program?

The answer consists of two parts. First, it is indeed true that traditional forms of programming
are useful for just a few people. But, programming as we the authors understand it is useful for
everyone: the administrative secretary who uses spreadsheets as well as the high-tech
programmer. In other words, we have a broader notion of programming in mind than the
traditional one. We explain our notion in a moment. Second, we teach our idea of programming
with a technology that is based on the principle of minimal intrusion. Hence our notion of
programming teaches problem-analysis and problem-solving skills without imposing the
overhead of traditional programming notations and tools.

To get a better understanding of modern programming, take a closer look at spreadsheets, one of
today's popular application packages. A user enters formulas into a spreaqsheet The formulas
describe how a cell 4 depends on another cell B. Then, as the user enters a number into B, the
spreadsheet automatically calculates the contents of cell 4. Foricomphcated spreadsheets a cell
may depend on many other cells, not just one. ) O

Other application packages require similar activities,' ,
A style sheet specifies how to create a (part of a) doct from yet-to-be-determined words or
sentences. When someone provides specific WO \\s\and yle sheet, the word processor creates
the document by replacing names in the' style sh t with specific words. Similarly, someone who
conducts a Web search may wi hto SpeCI, words to look for, what words should be next
to each other, and what wo should notoccur in the page. In this case, the output depends on
the search engine's cache f W ages, and the user's search expression.

:‘013 der wo:ridrfpr"ecessors and style sheets.

Finally, using a program generator in many ways relies on the same skills as those necessary for
application packages. A program generator creates a program in a traditional programming
language, such as C++ or Java, from high-level descriptions, such as business rules or scientific
laws. Such rules typically relate quantities, sales, and inventory records and thus specify
computations. The other parts of the program, especially how it interacts with a user and how it
stores data in the computer's disk, are generated with little or no human intervention.

All of these activities instruct some computer software to do something for us. Some use
scientific notation, some may use stylized English, some use a concrete programming notation.
All of them are some form of programming. The essence of these activities boils down to two
concepts:

1. relating one quantity to another quantity, and
2. evaluating a relationship by substituting values for names.

Indeed, the two concepts characterize programming at the lowest level, the computer's native
language, and in a modern fashionable language such as Java. A program relates its inputs to
outputs; and, when a program is used for specific inputs, the evaluation substitutes concrete
values for names.

-10-

?IyHeam_‘D
TEAM FLY PRESENTS



No one can predict what kind of application packages will exist five or ten years from now. But
application packages will continue to require some form of programming. To prepare students
for these kinds of programming activities, schools can either force them to study algebra, which
is the mathematical foundation of programming, or expose them to some form of programming.
Using modern programming languages and environments, schools can do the latter, they can do
it effectively, and they can make algebra fun.

Design Recipes

Cooking is at once child's play and adult joy. And
cooking done with care is an act of love.
-- Craig Claiborne (1920-2000), Food Editor, New

York Times

Learning to design programs is like learning to play soccer. A player must learn to trap a ball, to
dribble with a ball, to pass, and to shoot a ball. Once the player knows those basic skills, the next
goals are to learn to play a position, to play certain strategies, to choose among feasible strategies,
and, on occasion, to create variations of a strategy because none of the existing strategies fits.

N
A programmer is also very much like an architect, a composer, or a writer. They are creative
people who start with ideas in their heads and blank pieces of‘paper. They « conceive of an idea,
form a mental outline, and refine it on paper until their Wri‘t gs reflect thelr mental image as
much as possible. As they bring their ideas to paper; th mploybasw drawmg, wrltmg, and
instrumental skills to express certain style elements o ding, to describe a person's character,
or to formulate portions of a melody. They ca \practl - their trade because they have honed their
basic skills for a long time and can use\ them o n\imstmc ive level.

ranslateﬁ em-into first designs, and iteratively refine them
ea. Indeed, the best programmers edit and rewrite their
programs many times un S certain aesthetic standards. And just like soccer players,
architects, composers, or w “‘ters programmers must practice the basic skills of their trade for a
long time before they can be truly creative.

Programmers also form outli s
until they truly match the initia

Design recipes are the equivalent of soccer ball handling techniques, writing techniques,
techniques of arrangements, and drawing skills. A single design recipe represents a point of the
program design space. We have studied this space and have identified many important categories.
This book selects the most fundamental and the most practical recipes and presents them in
increasing order of difficulty.?

About half the design recipes focus on the connection between input data and programs. More
specifically, they show how the template of a program is derived from the description of the

input data. We call this data-driven program design, and it is the most frequently used form of
design. Data-driven designs are easy to create, easy to understand, and easy to extend and modify.
Other design recipes introduce the notion of generative recursion, accumulation, and history
sensitivity. The first one produces recursive programs that generate new instances of problems as
they recur; accumulator-style programs collect data as they process inputs; and history-sensitive
programs remember information between successive applications. Last, but not least, we also
introduce a design recipe for abstracting over programs. Abstracting is the act of generalizing
two (or more) similar designs into one and of deriving the original instances from it.

-11-

?IyHeam_‘D
TEAM FLY PRESENTS



On many occasions, a problem naturally suggests one design recipe. On others, a programmer
must choose from among several possibilities; each choice may produce programs with vastly
different organizations. Making choices is natural for a creative programmer. But, unless a
programmer is thoroughly familiar with the bag of design recipes to choose from and completely
understands the consequences of choosing one over the other, the process is necessarily ad hoc
and leads to whimsical, bad designs. We hope that by mapping out a collection of design recipes,
we can help programmers understand what to choose from and how to choose.

Now that we have explained what we mean by "‘programming" and *“program design," the
reader can see why and how teaching program design instills thinking skills that are important in
a variety of professions. To design a program properly, a student must:

analyze a problem statement, typically stated as a word problem;
express its essence, abstractly and with examples;

formulate statements and comments in a precise language;
evaluate and revise these activities in light of checks and tests; and
pay attention to details.

SNk W=

All of these are activities that are useful for a businessman, a lawyer, a Journahst a scientist, an

engineer, and many others. ‘ ‘

While traditional programming requires these skills, too, begmners often dont understand this
connection. The problem is that traditional programming- languages and traditional forms of
programming force students to perform a large amount of book- keepmg work and to memorize a
large number of language-specific facts. In short, men al Ork drowns the teaching of essential
skills. To avoid this problem, teachers must use a progr{ mming environment that imposes as
little overhead as possible and that accom \*beglnners Because such tools didn't exist
when we started, we developed them.

The Choice of S ""'heme and DrScheme

We ascribe beauty to that which is simple,
which has no superfluous parts,
which exactly answers its end,
which stands related to all things,
which is the mean of many extremes.
-- Ralph Waldo Emerson, The Conduct of Life

We have chosen Scheme as the programming language for this book, and we have designed and
implemented DrScheme, a programming environment for the language with special assistance
for beginning students. The programming environment is freely available at the book's official
Web site.

Still, the book it is not about programming in Scheme. We only use a small number of Scheme
constructs in this book. Specifically, we use six constructs (function definition and application,
conditional expressions, structure definition, local definitions, and assignments) plus a dozen or
so basic functions. This tiny subset of the language is all that is needed to teach the principles of
computing and programming. Someone who wishes to use Scheme as a tool will need to read
additional material.

-12-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



The choice of Scheme for beginners is natural. First, the core of Scheme permits programmers to
focus on just those two elements of programming that we pointed out at the beginning of the
preface: programs as relations between quantities and evaluating programs for specific inputs.
Using just this core language, students can develop complete programs during the first session
with a teacher.

Second, Scheme can easily be arranged as a tower of language levels. This property is crucial for
beginners who make simple notational mistakes that generate obscure error messages about
advanced features of a language. The result is often a wasteful search and a feeling of frustration
on the student's part. To avoid this problem, our programming environment, DrScheme,
implements several carefully chosen sublanguages of Scheme. Based on this arrangement, the
environment can signal error messages that are appropriate to a student's level of knowledge.
Better still, the layering of languages prevents many basic mistakes. We developed the layers and
the protection modes by observing beginners for weeks in Rice's computer lab. As students learn
more about programming and the language, the teacher can expose students to richer layers of
the language, which allows students to write more interesting and more concise programs.

Third, the DrScheme programming environment offers a truly interactive evaluator. It consists of
two windows: a Definitions window, where students define programs, and an Interactions
window, which acts like a pocket calculator. Students can enter expressior‘r‘s into the latter, and
DrScheme determines their values. In other words, computation starts with pocket-calculator
arithmetic, which they know quite well, and quickly proceed from there to calculations with
structures, lists, and trees -- the kinds of data that computer programs really manipulate.
Furthermore, an interactive mode of evaluation encoura esffstudent to-experiment in all kinds of
ways and thus stimulates their curiosity. "

Finally, the use of an interactive evaluafor vith a rich'data language permits students to focus on
problem solving and program design activ he key improvement is that interactive
evaluation renders a discussion of mput and output operations (almost) superfluous. This has
several consequences. | , input-and output operations require memorization. Learning these
things is tedious and bormg Conversely, students are better off learning problem-solving skills
and using canned input and output support. Second, good text-oriented input requires deep
programming skills, which are best acquired in a course on computational problem-solving.
Teaching bad text-oriented input is a waste of the teachers' and the students' time. Third, modern
software employs graphical user interfaces (GUI), which programmers design with editors and
““wizards" but not by hand. Again, students are best off learning to design the functions that are
connected to rulers, buttons, text fields and so on, rather than memorizing the specific protocols
that currently fashionable GUI libraries impose. In short, discussing input and output is a waste
of valuable learning time during a first introduction to programming. If students decide to pursue
programming in more depth, acquiring the necessary (Scheme) knowledge about input and
output procedures is straightforward.

In summary, students can learn the core of Scheme in a couple of hours, yet the language is as
powerful as a conventional programming language. As a result, students can focus immediately
on the essence of programming, which greatly enhances their general problem-solving skills.

The Parts of the Book

The book consists of eight parts and seven intermezzos. The parts focus on program design; the
intermezzos introduce other topics concerning programming and computing. Figure 2 shows the
-13-

?IyHeam_‘D
TEAM FLY PRESENTS



dependence graph for the pieces of the book. The graph demonstrates that there are several paths
through the book and that a partial coverage of the material is feasible.

Parts I through III cover the foundations of data-driven program design. Part IV introduces
abstraction in designs. Parts V and VI are about generative recursion and accumulation. For these
first six parts, the book uses a completely functional -- or algebraic -- form of programming. One
and the same expression always evaluates to the same result, no matter how often we evaluate it.
This property makes it easy to design, and to reason about, programs. To cope with interfaces
between programs and the rest of the world, however, we enrich the language with assignment
statements and abandon some of our algebraic reasoning. The last two parts show what this
means for the design of programs. More precisely, they show how the design recipes of the first
six parts apply and why we must be much more careful once assignments are added.

Intermezzos introduce topics that are important for computing and programming in general but
not for program design per se. Some introduce the syntax and semantics of our chosen subsets of
Scheme on a rigorous basis, a few introduce additional programming constructs. Intermezzo 5 is
a discussion of the abstract cost of computing (time, space, energy) and introduces vectors.
Intermezzo 6 contrasts two ways of representing numbers and processing them.

The coverage of some intermezzos can be delayed until a specific need ar%ses This is especially
true of the intermezzos on Scheme's syntax and semantics. But, con51dermg the central role of
intermezzo 3 in figure 2, it should be covered in a t1mely fash on. \

i
Part 111 ‘ Part TV Part V¥ ‘ Part VII ‘

D) ) @)

P ] favr |

Figure 2: The dependencies among parts and intermezzos

-14-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



IteraTive ReFINEMENT AND ITERATION OF ToPics: Systematic program design is particularly interesting
and important for large projects. The step from small single-function problems to small
multifunction projects requires an additional design idea: iterative refinement. The goal is to
design the core of a program and to add functionality to this core until the entire set of
requirements is met.

Students in a first course can, and must, get their first taste of iterative refinement. Hence, in
order to acquaint students with the technique, we have included extended exercises. Typically, a
brief overview sets the stage for a collection of exercises. The exercises gently guide students
through some design iterations. In section 16, the idea is spelled out explicitly.

Furthermore, the book revisits certain exercise and example topics time and again. For example,
sections 6.6, 7.4, 10.3, 21.4, 41.4, and a few exercises in between the last two sections cover the
idea of moving pictures across a canvas. The students thus see the same problem several times,
each time with more and more knowledge about how to organize programs.

Adding pieces of functionality to a program demonstrates why programméfs must follow a
design discipline. Solving the problem again shows students how to choose from alternative
design rec1pes Finally, on occasion, new knowledge just helps students improve the program
organization; in other words, students learn that programs ren't ﬁmshed after they work for the
first time but that, like papers and books, they needﬁ,,c;dlt >

Teacupacks: A second aspect of working on pI‘Q;}eCtS‘I f)rogrammers have to work in teams.
In an instructional context, this means that on “ Student s program has to fit precisely to someone
else's. To simulate what "*fitting one's functio omeone else's" means, we provide DrScheme
teachpacks. Roughly speaking; eachpack mulates a team partner yet avoids the frustration of
working with mistakes ina partner’s program component. More technically, the projects almost
always consist of a view and a model program component (in the sense of the model-view
software archltecture). In a typical setting, students design the model component. The teachpacks
provide the view components, often in the form of (graphical) user interfaces. Thus they
eliminate the tedious, mindless portions of coding. Furthermore, this particular separation of
concerns mimics that of real-world projects.

Fitting model components to view components requires students to pay attention to precise
specifications of functions. It demonstrates the paramount importance of following a design
discipline. It is also a critical skill for programmers and is often underemphasized in beginning
courses. In part IV we show how to construct some simple GUIs and how GUI events trigger the
application of model functions. The goal is to explain that constructing GUIs is no mystery, but
not to spend a lot of time on a topic that requires mostly rote learning and little computational
thinking.

Scuepure: Each university, college, and school has its own needs and must find an appropriate
schedule. At Rice University, we conventionally cover the entire book plus some additional
material in a single semester. An instructor at a research university should probably keep up a
similar pace. A high school teacher will necessarily pursue a slower pace. Many of the high
schools that tested the book covered the first three parts in a semester; some used only the first

-15-

?IyHeam_‘D
TEAM FLY PRESENTS



part to teach algebraic problem solving from a computational perspective; and yet others worked
through the entire book in a year. For more information on schedules, visit the book's Web site.

Tue Book on tHE WEB: The book comes in two versions: a paper copy and a freely accessible on-
line version at

http://www.htdp.org/

The Web site also provides additional material, especially extended exercises of the style
mentioned above. At this time, the Web page offers exercises on the visual simulation of ball
games and the management of Web site. More exercises will be added.

The two versions of the book come with different kinds of hints. Each is marked with one of the
following three icons:

This marker refers to DrScheme hints; they are available in both versions of the book.
The programming environment has been designed with students in mind. The hints
suggest how to use DrScheme at the various stages of the learning”f)rocess

This marker refers to teacher hints, which suggest strategies on h(bw to present a
section, on how to approach an exercise, or on how to. supplement some material.

Th1s marker 11nks to on-line solutions. Some solutlons are freely avaﬂable others are
yout registration, see the

e:iprograrﬁs are typeset using a small number
ariables. Sans Serif items are constants and

programming and computmg The book lists the first occurrence of such terms with sMaLL cAPITAL
Lerters. Other definitions are of a more fleeting nature; they introduce terms that are important
for a section, an example, an exercise, or some other small part of the book. The book uses
slanted words to emphasize such definitions. Finally, the book also defines classes of data. Most
data definitions are boxed, and the first occurrence of the defined name is also typeset using
slanted words.

Acknowledgments

Four people deserve special thanks: Robert **Corky" Cartwright, who co-developed a
predecessor of Rice's introductory course with the first author; Daniel P. Friedman, for asking
the first author to rewrite The Little LISPer (also MIT Press) in 1984, because it started this
project; John Clements, who designed, implemented, and maintains DrScheme's stepper; and
Paul Steckler, who faithfully supported the team with contributions to our suite of programming
tools.

The development of the book benefited from many other friends and colleagues who used it in
their courses and/or gave detailed comments on early drafts. We are grateful to them for their

-16-

?IyHeam_‘D
TEAM FLY PRESENTS



help and their patience: Ian Barland, John Clements, Bruce Duba, Mike Ernst, Kathi Fisler,
Daniel P. Friedman, John Greiner, John Stone, Geraldine Morin, and Valdemar Tamez.

A dozen generations of Comp 210 students at Rice University used early drafts of the text and
contributed improvements in various ways. In addition, numerous attendees of our TeachScheme!
workshops used early drafts in their classrooms. Many sent in comments and suggestions. As
representative of these we mention the following active contributors: Ms. Barbara Adler, Dr.
Stephen Bloch, Mr. Jack Clay, Dr. Richard Clemens, Mr. Kyle Gillette, Ms. Karen Buras, Mr.
Marvin Hernandez, Mr. Michael Hunt, Ms. Karen North, Mr. Jamie Raymond, and Mr. Robert
Reid. Christopher Felleisen patiently worked through the first few parts of the book with his
father and provided direct insight into the views of a young student. Hrvoje Blazevic (Master of
LPG/C Harriette), Joe Zachary (University of Utah) and Daniel P. Friedman (Indiana University)
discovered numerous typos in the first printing, which we have now fixed. Thank you to
everyone.

Finally, Matthias expresses his gratitude to Helga for her many years of patience and for creating
a home for an absent-minded husband and father. Robby is grateful to Hsing-Huei Huang for her
support and encouragement; without her, he would not have gotten anything done. Matthew
thanks Wen Yuan for her constant support and enduring music. Shriram is-indebted to Kathi
Fisler for support, patience and puns, and for her participation in this pr0j¢¢t.

n ﬁrogramming languages such as C/C++,

! Readers whose experience is e;;cl;usiv“cly\ o1
' 'method" where the preface mentions *"program."

Basic, and Pascal should read 00@d11\r¢'1

2 Our design recipes were inspired b; work with Daniel P. Friedman on structural recursion, with
Robert Harper on type theory, and by Michael A. Jackson's design method.

* Scheme has an official definition -- the Revised Report on Scheme, edited by Richard Kelsey,
William Clinger, and Jonathan Rees -- and many implementations. For a copy of the report and
for a list of alternative Scheme implementations, visit www.schemers.org on the Web. Note,
however, that the language of this book extends that of the report and is tailored to beginners.

-17-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



-18-

Part 1

Processing Simple Forms of Data

"‘4&;7f:::b
FlyHeart.com

TEAM FLY PRESENTS



Section 1

Students, Teachers, and Computers

We learn to compute at a young age. At first we just add and subtract numbers.

One plus one equals two. Five minus two is three.

As we grow older we learn about additional mathematical operations, like exponentiation and
sine, but we also learn to describe rules of computation.

Given a circle of radius r, its circumference is 7 times two times pi. A minimum-wage laborer
who works for N hours earns N times 5.35 dollars.

The truth is, our teachers turn us into computers and program us to execute/simple computer
programs. “ “

So, the secret is out. Computer programs are just very fast students They can perform millions
of additions while we might still be struggling with the irst on But computer programs can do
more than just manipulate numbers. They can guide an rplane. They can play games. They can
look up a person's phone number. They can print the payroll checks for huge corporations. In
short, computers process all kinds of mformatmn. \ \

People state information and instriictiohs i

The temperature is 357 this temperature into Fahrenheit. It takes this car 35 seconds to
accelerate from zero to 100 mile per hour; determine how far the car gets in 20 seconds.
Computers, however, barely understand basic English and certainly can't understand complex
instructions expressed in English. Instead we must learn to speak a computer language so that we
can communicate information and instructions.

A computer's language of instruction and information is a PROGRAMMING LANGUAGE. Information
expressed in a programming language is called pata. There are many flavors of data. Numbers
are one class of data. Number series belong to the class of compounp pata, because each series is
made up of other pieces of smaller pieces of data, namely, numbers. To contrast the two kinds of
data, we also call numbers atomic pata. Letters are other examples of atomic data; family trees
are compound data.

Data represents information, but the concrete interpretation is up to us. For example, a number
like 37.51 may represent a temperature, a time, or a distance. A letter like **A" may denote a
school grade, a quality symbol for eggs, or a part of an address.

Like data, instructions, also called oreraTions, come in several flavors. Each class of data comes
with a set of primiTive oPErRATIONS. FOr numbers, we naturally get +, -, *, and so on. Programmers
compose primitive operations into rrograms. Thus, we may think of primitive operations as the
words of a foreign language and of programming as forming sentences in this language.

-19-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Some programs are as small as essays. Others are like sets of encyclopedias. Writing good essays
and books requires careful planning, and writing good programs does, too. Small or large, a good
program cannot be created by tinkering around. It must be carefully designed. Each piece needs a
lot of attention; composing programs into larger units must follow a well-planned strategy.
Designing programs properly must be practiced from our very first day of programming.

In this book, we will learn to design computer programs, and we will learn to understand how
they function. Becoming and being a programmer is fun, but it is not easy. The best part of being
a programmer is watching our ““products" grow and become successful. It is fun to observe a
computer program play a game. It is exciting to see a computer program help someone. To get to
this point, however, we must practice many skills. As we will find out, programming languages
are primitive; especially, their grammar is restrictive. And unfortunately, computers are stupid.
The smallest grammatical mistake in a program is a fatal stumbling block for a computer. Worse,
once our program is in proper grammatical shape, it might not perform the computations as
intended.

Programming a computer requires patience and concentration. Only attention to minute details
will avoid frustrating grammatical mistakes. Only rigorous planning and adherence to the plan
will prevent serious logical mistakes in our designs. But when we finally master the design of
programs, we will have learned skills that are useful far beyond the(,ye‘alm“q‘f programming.

Let's get started!

-20-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Section 2

Numbers, Expressions, Simple Programs

In the beginning, people thought of computers as number crunchers. And indeed, computers are
very good at working with numbers. Since teachers start their first-graders on computing with
numbers, we start with numbers, too. Once we know how computers deal with numbers, we can
develop simple programs in no time; we just translate common sense into our programming
notation. Still, even developing such simple programs requires discipline, and so we introduce
the outline of the most fundamental design recipe and the basic programming guideline at the
end of this section.

2.1 Numbers and Arithmetic a
P ‘ ‘\

Numbers come in many different flavors: positive and negatlve mtegers fractlons (also known as

rationals), and reals are the most widely known classes o

5 -5  2/3 17/3 #‘:

The first three ask Scheme to perform additions; the last three demand a subtraction, a
multiplication, and a division. All arithmetic expressions are parenthesized and mention the
operation first; the numbers follow the operation and are separated by spaces.

As in arithmetic or algebra, we can nest expressions:

(* (+22) (/ (* (+ 35) (/30 10)) 2))

Scheme evaluates these expressions exactly as we do. It first reduces the innermost parenthesized
expressions to numbers, then the next layer, and so on:

2) (/ (* (+ 3 5) (/ 30 10)) 2))
(* 8 3) 2))
2

QO X X X

(
(
(
(
4

Because every Scheme expression has the shape
21-

X -
FlyHeart.com

TEAM FLY PRESENTS



(operation A ... B)

there is never any question about which part has to be evaluated first. Whenevera ... Bare
numbers, the expression can be evaluated; otherwise, 2 ... B are evaluated first. Contrast this
with

d3+4.5,

which is an expression that we encounter in grade school. Only a substantial amount of practice
guarantees that we remember to evaluate the multiplication first and the addition afterwards.*

Finally, Scheme not only provides simple arithmetical operations but a whole range of advanced
mathematical operations on numbers. Here are five examples:

(sgrt A) computes (A)l/2

(expt A B) computes A°;

(remainder A B) computes the remainder of the integer division 4/B;
(log a) computes the natural logarithm of 2; and

(sin A) computes the sine of A radians. (]

Nnhwbh =

When in doubt whether a primitive operation exists or how it works use DrScheme to test
whether an operation is available with a simple example.

A Note on Numbers: Scheme computes with xact s and rati nals as long as we use
primitive operations that produce exact results. Thu d plays the result of (/ 44 14) as 22/7.
Unfortunately, Scheme and other programmln \Ianguages compromise as far as real numbers are
concerned. For example, since the square‘ ot of 2 1S not a rational but a real number, Scheme
USES an INEXACT NUMBER: \

(sgqrt 2)

The #i notation warns the pfbgrammer that the result is an approximation of the true number.
Once an inexact number has become a part of a calculation, the process continues in an
approximate manner. To wit:

(- #11.0 #10.9)
#10.09999999999999998

but

(- #11000.0 #i999.9)
= #10.10000000000002274

even though we know from mathematics that both differences should be 0.1 and equal. Once
numbers are inexact, caution is necessary.

This imprecision is due to the common simplification of writing down numbers like the square
root of 2 or =as rational numbers. Recall that the decimal representations of these numbers are
infinitely long (without repetition). A computer, however, has a finite size, and therefore can
only represent a portion of such a number. If we choose to represent these numbers as rationals

22-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



with a fixed number of digits, the representation is necessarily inexact. Intermezzo 6 will explain
how inexact numbers work.

To focus our studies on the important concepts of computing and not on these details, the
teaching languages of DrScheme deal as much as possible with numbers as precise numbers.
When we write 1 .25, DrScheme interprets this number as a precise fraction, not as an inexact
number. When DrScheme's Interactions window displays a number such as 1.25 or 22/7, it is
the result of a computation with precise rationals and fractions. Only numbers prefixed by #i are
inexact representations.

Exercise 2.1.1.

Find out whether DrScheme has operations for squaring a number; for computing the sine of an
angle; and for determining the maximum of two numbers.

Exercise 2.1.2. Evaluate (sqrt 4), (sqrt 2),and (sqrt -1) in DrScheme. Then, find out
whether DrScheme knows an operation for determining the tangent of an angle.

2.2 Variables and Programs ‘

In algebra we learn to formulate dependencies between quantities usmg VARIABLE EXPRESSIONS. A
variable is a placeholder that stands for an unknown quantity. For example a disk of radius 7 has
the approximate area’

expression to a numbe

3.14.52=314.25 =785

More generally, expressions"that contain variables are rules that describe how to compute a
number when we are given values for the variables.

A program is such a rule. It is a rule that tells us and the computer how to produce data from
some other data. Large programs consist of many small programs and combine them in some
manner. It is therefore important that programmers name each rule as they write it down. A good
name for our sample expression is area-of-disk. Using this name, we would express the rule
for computing the area of a disk as follows:

(define (area-of-disk r)
(* 3.14 (* r r)))

The two lines say that area-of-disk is a rule, that it consumes a single weur, called r, and that
the result, or outrur, is goingtobe (* 3.14 (* r r)) once we know what number r represents.

Programs combine basic operations. In our example, area-of-disk uses only one basic
operation, multiplication, but defined programs may use as many operations as necessary. Once
we have defined a program, we may use it as if it were a primitive operation. For each variable
23

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



listed to the right of the program name, we must supply one input. That is, we may write
expressions whose operation is area-of-disk followed by a number:

(area-of-disk 5)
We also say that we appLY area-of-disk to 5.

The application of a defined operation is evaluated by copying the expression named area-of-
disk and by replacing the variable (r) with the number we supplied (5):

(area-of-disk 5)
(* 3.14 (* 5 5))
(* 3.14 25)

78.5

Many programs consume more than one input. Say we wish to define a program that computes
the area of a ring, that is, a disk with a hole in the center:

the program requires fwo unknown quantities: the outer and the inner radii. Let us call these
unknown numbers outer and inner. Then the prog ,‘ni\{gha\t/computes the area of a ring is
defined as follows: N

(define (area-of-=rir
(- (area-of~
(area-of=disk innery

The three lines express that area-of-ring is a program, that the program accepts two inputs,
called outer and inner, and that the result is going to be the difference between (area-of-disk
outer) and (area-of-disk inner). In other words, we have used both basic Scheme
operations and defined programs in the definition of area-of-ring.

When we wish to use area-of-ring, we must supply two inputs:

(area-of-ring 5 3)

The expression is evaluated in the same manner as (area-of-disk 5). We copy the expression
from the definition of the program and replace the variable with the numbers we supplied:

(area-of-ring 5 3)

= (- (area-of-disk 5)
(area-of-disk 3))

= (- (* 3.14 (
(* 3.14

* 5 5))
* 3 3)))
24-

X -
FlyHeart.com

TEAM FLY PRESENTS



The rest is plain arithmetic.

Exercise 2.2.1. Define the program rFahrenheit->Celsius,® which consumes a temperature
measured in Fahrenheit and produces the Celsius equivalent. Use a chemistry or physics book to
look up the conversion formula.

When the function is fully developed, test it using the teachpack convert.ss. The teachpack
provides three functions: convert-gui, convert-repl, and convert-file. The first creates a
graphical user interface. Use it with

(convert-gui Fahrenheit->Celsius)
The expression will create a new window in which users can manipulate a slider and buttons.

The second emulates the Interactions window. Users are asked to enter a Fahrenheit
temperature, which the program reads, evaluates, and prints. Use it via

(convert-repl Fahrenheit->Celsius) ||
| \

The last operation processes entire files. To use it, create a file with thése numbers that are to be
converted. Separate the numbers with blank spaces or ne: line “\\The function reads the entire

file, converts the numbers, and writes the results into a. W file. Herewls the expression:

(convert-file "in.dat" Fahrenheif=>Ce.

teachpack convert.ss.

Exercise 2.2.2. Define t € program dollar->euro, which consumes a number of dollars and
produces the euro equivalent. Use the currency table in the newspaper to look up the current
exchange rate.

Exercise 2.2.3. Define the program triangle. It consumes the length of a triangle's side and its
height. The program produces the area of the triangle. Use a geometry book to look up the
formula for computing the area of a triangle.

Exercise 2.2.4. Define the program convert3. It consumes three digits, starting with the least
significant digit, followed by the next most significant one, and so on. The program produces the
corresponding number. For example, the expected value of

(convert3 1 2 3)
is 321. Use an algebra book to find out how such a conversion works.

Exercise 2.2.5. A typical exercise in an algebra book asks the reader to evaluate an expression
like

-25-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



TE
E—F?

forn=2,n=>5, and n =9. Using Scheme, we can formulate such an expression as a program and
use the program as many times as necessary. Here is the program that corresponds to the above
expression:

(define (f n)
(+ (/ n 3) 2))

First determine the result of the expression at n =2, n =5, and n = 9 by hand, then with
DrScheme's stepper.

Also formulate the following three expressions as programs:

1. n*+10
2. (172)-n*+20
3. 2-(l/n)

Determine their results for » = 2 and » = 9 by hand and with DrScheme. (]

2.3 Word Problems

ambiguous information. The programmers' firs
then to formulate appropriate expressions.

Here is a typical example:

Company XYZ & Co. pa /S all i employees $12 per hour. A typical employee works between
20 and 65 hours per week ‘Develop a program that determines the wage of an employee from the
number of hours of work. "

The last sentence is the first to mention the actual task: to write a program that determines one
quantity based on some other quantity. More specifically, the program consumes one quantity,
the number of hours of work, and produces another one, the wage in dollars. The first sentence
implies how to compute the result, but doesn't state it explicitly. In this particular example,
though, this poses no problem. If an employee works % hours, the wage is

12. 4.

Now that we have a rule, we can formulate a Scheme program:

(define (wage h)
(* 12 h))

The program is called wage; its parameter h stands for the hours an employee works; and its
resultis (* 12 h), the corresponding wage.

Exercise 2.3.1. Utopia's tax accountants always use programs that compute income taxes even
though the tax rate is a solid, never-changing 15%. Define the program tax, which determines
the tax on the gross pay.

-26-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Also define netpay. The program determines the net pay of an employee from the number of
hours worked. Assume an hourly rate of $12.

Exercise 2.3.2. The local supermarket needs a program that can compute the value of a bag of
coins. Define the program sum-coins. It consumes four numbers: the number of pennies, nickels,
dimes, and quarters in the bag; it produces the amount of money in the bag.

Exercise 2.3.3. An old-style movie theater has a simple profit function. Each customer pays $5
per ticket. Every performance costs the theater $20, plus $.50 per attendee. Develop the function
total-profit. It consumes the number of attendees (of a show) and produces how much
income the attendees produce.

2.4 Errors

When we write Scheme programs, we must follow a few carefully designed rules, which are a
compromise between a computer's capabilities and human behavior.” Fortunately, forming
Scheme definitions and expressions is intuitive. Expressions are either atomic, that is, numbers
and variables; or they are compounp expressions, in which case they start with **(", followed by an
operation, some more expressions, and terminated by "*)". Each expressio‘n‘in a compound
expression should be preceded by at least one space; line breaks are permismble and sometimes
increase readability. \

Definitions have the following schematic shape:

(define (f x ... vy)
an-expression)

That is, a definition is a sequence of sever ~words and expressions: **(", the word *“define", (",
, )", an expression, and a closing **)". The
embedded sequence of 1

its parameters.

Syntax Errors:® Not all parenthesized expressions are Scheme expressions. For example, (10)
is a parenthesized expression, but Scheme does not accept it as a legal Scheme expression
because numbers are not supposed to be included in parentheses. Similarly, a sentence like (10
+ 20) is also ill formed; Scheme's rules demand that the operator is mentioned first. Finally, the
following two definitions are not well formed:

(define (P x)
(+ (x) 10))

(define (Q x)
x 10)

The first one contains an extra pair of parentheses around the variable x, which is not a
compound expression; the second contains two atomic expressions, x and 10, instead of one.

When we click DrScheme's Execute button, the programming environment first determines
whether the definitions are formed according to Scheme's rules. If some part of the program in
the Definitions window is ill formed, DrScheme signals a syntax error with an appropriate

27-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



error message and highlights the offending part. Otherwise it permits the user to evaluate
expressions in the Interactions window.

Exercise 2.4.1. Evaluate the following sentences in DrScheme, one at a time:

+ (10) 20)
(10 + 20)
(+ +)

Read and understand the error messages.

Exercise 2.4.2. Enter the following sentences, one by one, into DrScheme's Definitions
window and click Execute:

(define (f 1)
(+ x 10))

(define (g x)
+ x 10)

(define h (x) a
(+ x 10)) ]

Read the error messages, fix the offending definition in an approprlate manner and repeat until
all definitions are legal.

Run-time Errors: The evaluation of Scheme- expre‘ 10N proceeds according to the intuitive
laws of algebra and arithmetic. When we encounter ne erations, we will extend these laws,
first intuitively and then, in section 8, rig )T FQr now, it is more important to understand
that not all legal Scheme expressions ha“ t. One obvious example is (/ 1 0). Similarly,
if we define SO

(define (f n)~
(+ (/ n 3) 2))

we cannot ask DrScheme to evaluate (£ 5 8).

When the evaluation of a legal Scheme expression demands a division by zero or similarly
nonsensical arithmetic operations, or when a program is applied to the wrong number of inputs,
DrScheme stops the evaluation and signals a run-TivE ERROR. Typically it prints an explanation in
the Interactions window and highlights the faulty expression. The highlighted expression
triggered the error signal.

Exercise 2.4.3. Evaluate the following grammatically legal Scheme expressions in DrScheme's
Interactions window:

(+5 (/1 0))
(sin 10 20)

(somef 10)

Read the error messages.

-28-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Exercise 2.4.4. Enter the following grammatically legal Scheme program into the befinitions
window and click the Execute button:

(define (somef x)
(sin x X))

Then, in the Interactions window, evaluate the expressions:

(somef 10 20)

(somef 10)
and read the error messages. Also observe what DrScheme highlights.

Logical Errors: A good programming environment assists the programmer in finding syntax
and runtime errors. The exercises in this section illustrate how DrScheme catches syntax and
run-time errors. A programmer, however, can also make rogicar errors. A logical mistake does
not trigger any error messages; instead, the program computes incorrect results. Consider the
wage program from the preceding section. If the programmer had accidentally defined it as

(define (wage h) o~
(+ 12 h)) Y

the program would still produce a number every time it
12/11), we even get the correct result. A programmer
programs carefully and systematically.

2.5 Designing Prograﬁms/“\‘

understand what the progr“ m consumés what it produces, and how it relates inputs to outputs.
We must know, or find out‘f ;hether Scheme provides certain basic operations for the data that
our program is to process. If not, we might have to develop auxiliary programs that implement
these operations. Finally, once we have a program, we must check whether it actually performs
the intended computation. This might reveal syntax errors, run-time problems, or even logical
errors.

To bring some order to this apparent chaos, it is best to set up and to follow a pesioN recipE, that is,
a step-by-step prescription of what we should do and the order” in which we should do things.
Based on what we have experienced thus far, the development of a program requires at least the
following four activities:

;7 Contract: area-of-ring : number number -> number

;; Purpose: to compute the area of a ring whose radius is
;; outer and whose hole has a radius of inner

;; Example: (area-of-ring 5 3) should produce 50.24

;; Definition: [refines the header]
(define (area-of-ring outer inner)

-20-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



-30-

(- (area-of-disk outer)
(area-of-disk inner)))

;; Tests:
(area-of-ring 5 3)
;; expected value
50.24

Figure 3: The design recipe: A complete example

Understanding the Program's Purpose: The goal of designing a program is to create a
mechanism that consumes and produces data. We therefore start every program
development by giving the program a meaningful name and by stating what kind of
information it consumes and produces. We call this a contracT.

Here is how we write down a contract for area-of-ring, one of our first programs:*

;; area-of-ring : number number -> number

The semicolons indicate that this line is a comment. The contract cdﬂsists of two parts. The
first, to the left of the colon, states the program's name. The seconﬂ, to the right of the
colon, specifies what kind of data the program consumes and what 1t produces the inputs
are separated from the output by an arrow.

Once we have a contract, we can add the HEADER
each input a distinct name These nan
the program's paARAMETERS."

1e program's name and gives
raic) variables and are referred to as

Let's take a look at th ader for area-of-ring:

numBér number -> number
ing outer inner) ...)

It says that we will refer to the first input as outer and the second one as inner.

Finally, using the contract and the parameters, we should formulate a short purrose
staTeMeNT for the program, that is, a brief comment of what the program is to compute.
For most of our programs, one or two lines will suffice; as we develop larger and larger
programs, we may need to add more information to explain a program's purpose.

Here is the complete starting-point for our running example:

;; area-of-ring : number number -> number

;; to compute the area of a ring whose radius is
;; outer and whose hole has a radius of inner
(define (area-of-ring outer inner) ...)

Hints: If the problem statement provides a mathematical formula, the number of distinct
variables in the formula suggests how many inputs the program consumes.

X -
FlyHeart.com

TEAM FLY PRESENTS



31-

For other word problems, we must inspect the problem to separate the given facts from
what is to be computed. If a given is a fixed number, it shows up in the program. If it is
an unknown number that is to be fixed by someone else later, it is an input. The question
(or the imperative) in the problem statement suggests a name for the program.

Program Examples: To gain a better understanding of what the program should
compute, we make up examples of inputs and determine what the output should be. For
example, area-of-ring should produce 50.24 for the inputs 5 and 3, because it is the
difference between the area of the outer disk and the area of the inner disk.

We add examples to the purpose statement:

;; area-of-ring : number number -> number

;; to compute the area of a ring whose radius is

;; outer and whose hole has a radius of inner

;; example: (area-of-ring 5 3) should produce 50.24
(define (area-of-ring outer inner) ...)

Making up examples -- before we write down the program's body -- helps in many
ways. First, it is the only sure way to discover logical errors with testlng If we use the
finished program to make up examples, we are tempted to trust the program because it is
so much easier to run the program than to predict what it does. Second, examples force us
to think through the computational process, which, for- the comphcated cases we will
encounter later, is critical to the development of he function body. Finally, examples
illustrate the informal prose of a purpose statem t. uture eaders of the program, such
as teachers, colleagues, or buyers, greatly apprecr e illustrations of abstract concepts.

The Body Finally, we must ormulate e\program s body. That is, we must replace
the **..." in our header with an expression. The expression computes the answer from
the parameters using Scheme's bas1c operations and Scheme programs that we already
defined(Hint"ﬂ t ,

We can only formulate the program's body if we understand how the program computes
the output from the given inputs. If the input-output relationship is given as a
mathematical formula, we just translate mathematics into Scheme. If, instead, we are
given a word problem, we must craft the expression carefully. To this end, it is helpful to
revisit the examples from the second step and to understand 2Zow we computed the
outputs for specific inputs.

In our running example, the computational task was given via an informally stated
formula that reused area-of-disk, a previously defined program. Here is the
translation into Scheme:

(define (area-of-ring outer inner)
(- (area-of-disk outer)
(area-of-disk inner)))

Testing: After we have completed the program definition, we must still test the program.
At a minimum, we should ensure that the program computes the expected outputs for the
program examples. To facilitate testing, we may wish to add the examples to the bottom

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



of the pefinitions window as if they were equations. Then, when we click the Execute
button, they are evaluated, and we see whether the program works properly on them.

Testing cannot show that a program produces the correct outputs for all possible inputs --
because there are typically an infinite number of possible inputs. But testing can reveal
syntax errors, run-time problems, and logical mistakes.

For faulty outputs, we must pay special attention to our program examples. It is possible
that the examples are wrong; that the program contains a logical mistake; or that both the
examples and the program are wrong. In either case, we may have to step through the
entire program development again.

Figure 3 shows what we get after we have developed the program according to our recipe.
Figure 4 summarizes the recipe in tabular form. It should be consulted whenever we design a

program.
Phase Goal Activity
Contract to name the choose a name that fits the problem ‘s”situdy the problem
Purpose and function; for clues on how many unknown ""giyens" the function
Header to specify its consumes spick one variable per ‘inph‘t if possible, use
classes of names that are mentloned for the “givens" in the problem
input data and statement .descrlb What the functlon should produce
its [ !
class of output
data;
to describe its
purpose;
to formulate a
Examples search the problem statement for examples swork through
the examples »validate the results, if possible »make up
output examples
relationship via
examples
Body to define the formulate how the function computes its results »develop
function a Scheme expression that uses Scheme's primitive
operations, other functions, and the variables stranslate
the mathematical expressions in the problem statement,
when available
Test to discover apply the function to the inputs of the examples scheck
mistakes that the outputs are as predicted
(*“typos" and
logic)
Figure 4: The design recipe at a glance
-32-

X -
FlyHeart.com

TEAM FLY PRESENTS



The design recipe is not a magic bullet for the problems we encounter during the design of a
program. It provides some guidance for a process that can often appear to be overwhelming. The
most creative and most difficult step in our recipe concerns the design of the program's body. At
this point, it relies heavily on our ability to read and understand written material, on our ability to
extract mathematical relationships, and on our knowledge of basic facts. None of these skills is
specific to the development of computer programs; the knowledge we exploit is specific to the
application domain in which we are working. The remainder of the book will show what and
how much computing can contribute to this most complicated step.

Domain Knowledge: Formulating the body of a program often requires knowledge about the
area, also known as domain, from which the problem is drawn. This form of knowledge is called
DOMAIN KNOWLEDGE. It may have to be drawn from simple mathematics, such as arithmetic, from
complex mathematics, such as differential equations, or from non-mathematical disciplines:
music, biology, civil engineering, art, and so on.

Because programmers cannot know all of the application domains of computing, they must be
prepared to understand the language of a variety of application areas so that they can discuss
problems with domain experts. The language is often that of mathematics, but in some cases, the
programmers must invent a language, especially a data language for the application area. For that
reason, it is imperative that programmers have a solid understanding of thp full possibilities of
computer languages. ~ |

* Another advantage of Scheme's notation is that we a a S know where to place an operator or
where to find it: to the immediate right of the Qpenlng yarenthesis. This is important in

computing because we need many more o era fthan just the few numerical operators that we
use in arithmetic and algebra. ~

> It is common to speak of the ar fa éf;cle, but mathematically speaking, the circle is only the
disk's outer edge.

5 An arrow is keyed in as - followed by >.

T This statement is true for any other programming language as well, for example, spreadsheet
languages, C, word processor macro. Scheme is simpler than most of these and easy to
understand for computers. Unfortunately, to human beings who grow up on infix expressions
such as 5 + 4, Scheme prefix expressions such as (+ 5 4) initially appear to be complicated. A
bit of practice will quickly eliminate this misconception.

¥ We will find out in section 8 why such errors are called syntax errors.

> As we will see later, the order is not completely fixed. It is possible, and for a number of
reasons, desirable to switch the order of some steps in some cases.

2 An arrow is keyed in as - followed by >.

1 Others also call them FORMAL ARGUMENTS OT INPUT VARIABLES.

-33-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Section 3

Programs are Function Plus Variable
Definitions

In general, a program consists not just of one, but of many definitions. The area-of-ring
program, for example, consists of two definitions: the one for area-of-ring and another one for
area-of-disk. We refer to both as runction permNiTIONS and, using mathematical terminology in a
loose way, say that the program is comrosep of several functions. Because the first one, area-of-
ring, is the function we really wish to use, we refer to it as the mav Function; the second one,
area-of-disk, 1S an AUXILIARY FUNCTION.

The use of auxiliary functions makes the design process manageable and renders programs
readable. Compare the following two versions of area-of-ring: ~ |

(define (area-of-ring outer inner)
(- (area-of-disk outer)
(area-of-disk inner))) \ N LA

The definition on the left composes auxiliary functl ons. D >signing it helped us break up the
original problem into smaller, more easily solvable probl ns. Reading it reminds us of our
reasoning that the area is the difference betwe e-area of the full disk and the area of the hole.
In contrast, the definition on the right requires a reader to reconstruct the idea that the two
subexpressions compute the area of two disks. Furthermore, we would have had to produce the
right definition in one n onohthlc block; 'without benefit of dividing the problem-solving process
into smaller steps.

For a small program such as area-of-ring, the differences between the two styles are minor.
For large programs, however, using auxiliary functions is not an option but a necessity. That is,
even if we are asked to write a single program, we should consider breaking it up into several
small programs and composing them as needed. Although we are not yet in a position to develop
truly large programs, we can still get a feeling for the idea by developing two versions in parallel.

The first subsection contrasts the two development styles with an example from the business
domain. It demonstrates how breaking up a program into several function definitions can greatly
increase our confidence in the correctness of the overall program. The second subsection
introduces the concept of a variable definition, which is an additional important ingredient for
the development of programs. The last subsection proposes some exercises.

3.1 Composing Functions

Consider the following problem:

-34-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Imagine the owner of a movie theater who has complete freedom in setting ticket prices. The
more he charges, the fewer the people who can afford tickets. In a recent experiment the owner
determined a precise relationship between the price of a ticket and average attendance. At a price
of $5.00 per ticket, 120 people attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. Unfortunately, the increased attendance also comes at an increased
cost. Every performance costs the owner $180. Each attendee costs another four cents ($0.04).
The owner would like to know the exact relationship between profit and ticket price so that he
can determine the price at which he can make the highest profit.

While the task is clear, how to go about it is not. All we can say at this point is that several
quantities depend on each other.

When we are confronted with such a situation, it is best to tease out the various dependencies one
at a time:

Profit is the difference between revenue and costs.

The revenue is exclusively generated by the sale of tickets. It is the product of ticket price

and number of attendees.

3. The costs consist of two parts: a fixed part ($180) and a variable part that depends on the
number of attendees. ]

4. Finally, the problem statement also specifies how the number of aﬁtendees depends on the

ticket price. ~ |

N —

Let's formulate a function for each of these dependencles, after ll, func@ion‘s"'icompute how

quantities depend on each other.

We start with contracts, headers, and purpos{éa t Here is the one for profit:
N >

;; profit : number —>/nﬁmbe‘
;; to compute the p: '

;7 at some give:
(define (proﬁi"

erence between revenue and costs

It depends on the ticket prlc because both revenue and cost depend on the ticket price. Here are
the remaining three: .

;7 revenue : number -> number
;; to compute the revenue, given ticket-price
(define (revenue ticket-price) ...)

;7 cost : number -> number
;; to compute the costs, given ticket-price
(define (cost ticket-price) ...)

;; attendees : number -> number
;; to compute the number of attendees, given ticket-price
(define (attendees ticket-price) ...)

Each purpose statement is a rough transliteration of some part of the problem statement.

Exercise 3.1.1. The next step is to make up examples for each of the functions. Determine how
many attendees can afford a show at a ticket price of $3.00, $4.00, and $5.00. Use the examples
to formulate a general rule that shows how to compute the number of attendees from the ticket
price. Make up more examples if needed.

-35-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 3.1.2. Use the results of exercise 3.1.1 to determine how much it costs to run a show
at $3.00, $4.00, and $5.00. Also determine how much revenue each show produces at those
prices. Finally, figure out how much profit the monopolistic movie owner can make with each
show. Which is the best price (of these three) for maximizing the profit?

Once we have written down the basic material about our functions and calculated out several
examples, we can replace the . . ." with Scheme expressions. The left column of figure 5
contains complete definitions of all four functions. The profit function computes its result as
the difference between the result of revenue and cost, just as the problem analysis and purpose
statement suggest. The computation of both depends on ticket-price, which is what the
applications say. To compute the revenue, we first compute the number of attendees for the
given ticket-price and multiply it with ticket-price. Similarly, to compute the cost we add
the fixed portion of the cost to the variable part, which is the product of the number of attendees
and 0. 04 (four cents). Finally, the computation of the number of attendees also follows the
problem statement. The base attendance at a price of five dollars is 120, and for each 10 cents
less than five dollars, 15 more attendees show up.

;7 How to design a program
(define (profit ticket-price) [ )
(- (revenue ticket-price) i How_not‘Fo design a

(cost ticket-price))) progrémgi\‘l . .
(define (profit price)

Pl
1

(define (revenue ticket-price) (* (+ 120
(* (attendees ticket-price) ticket (f>(/ 15 .10)
price)) ( \ ~~~ (- 5.00 price)))
price)
(define (cost ticket-price) (+ 180
(+ 180 N (* .04
(* .04 (attendees. (+ 120
price)))) - (* (/ 15 .10)
(- 5.00

(define (atte price)))))))

(+ 120
(* (/ 15
price))))

Figure 5: Two ways to express the profit program

Instead of developing a function per dependency in the problem statement, we could have tried
to express the relationship between the ticket price and the owner's profit in a single function.
The right column in figure 5 shows the most straightforward way of doing so. And indeed, it is
easy to check that the two profit programs in figure 5 produce the same profit when given the
same ticket price. Still, it is also obvious that while the arrangement on the left conveys the
intention behind the program directly, the program on the right is nearly impossible to
understand. Worse, if we are asked to modify some aspect of the program, say, the relationship
between the number of attendees and the price of the ticket, we can do this for the left column in
a small amount of time, but we need to spend a much longer time for the right one.

Based on our experience, we thus formulate the first and most important guideline of
programming;:
-36-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Guideline on Auxiliary Functions

Formulate auxiliary function definitions for every dependency between quantities mentioned in
the problem statement or discovered with example calculations.

Sometimes we will find that some of the required functions are already available as programs for
other problems. Indeed, we have already encountered such an example: area-of-disk. At other
times, we will make a list of functions and develop each one separately. We may then find that
some of the functions, such as attendees, are useful in several other definitions, leading to a
network-like relationship among functions.

Exercise 3.1.3. Determine the profit that the movie owner makes at $3.00, $4.00, and $5.00
using the program definitions in both columns. Make sure that the results are the same as those
predicted in exercise 3.1.2.

Exercise 3.1.4. After studying the cost structure of a show, the owner discovered several ways
of lowering the cost. As a result of his improvements, he no longer has a fixed cost. He now
simply pays $1.50 per attendee.

‘ \
Modify both programs to reflect this change. When the programs are modlﬁed test them again
with ticket prices of $3.00, $4.00, and $5.00 and compare the results. \‘

3.2 Variable Definitions

(define PI 314

Now, every time we refer to p1, DrScheme replaces it with 3. 14.

Using a name for a constant makes it easier to replace it with a different value. Suppose our
program contains the definition for p1, and we decide that we need a better approximation of =for
the entire program. By changing the definition to

(define PI 3.14159)

the improvement is used everywhere where we use p1. If we didn't have a name like p1 for », we
would have to find and all instances of 3.14 in the program and replace them with 3.14159.

Let us formulate this observation as our second guideline:

Guideline on Variable Definitions

Give names to frequently used constants and use the names instead of the constants in programs.

Initially, we won't use many variable definitions for constants, because our programs are small.
But, as we learn to write larger programs, we will make more use of variable definitions. As we
-37-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



will see, the ability to have a single point of control for changes is important for variable and
function definitions.

Exercise 3.2.1. Provide variable definitions for all constants that appear in the profit program of
figure 5 and replace the constants with their names.

3.3 Finger Exercises on Composing Functions

Exercise 3.3.1. The United States uses the English system of (length) measurements. The rest
of the world uses the metric system. So, people who travel abroad and companies that trade with
foreign partners often need to convert English measurements to metric ones and vice versa.

Here is a table that shows the six major units of length measurements of the English system:*

English metri
C
1 inch =254 cm
1 foot =12 in. d

lyard =3 ft. |
1 rod =5(1/2) yd.
1 furlong=40 rd
l mile =8

Develop the functions inches->cm, feet\ e{s\;\yards—>feet, rods->yards, furlongs-

>rods, and miles- >furlon

Then develop the fuﬁéti{)‘ S fe ,~yérds—>cm, rods->inches, and miles->feet.

Hint: Reuse functions as much as possible. Use variable definitions to specify constants.

Exercise 3.3.2. Develop the program volume-cylinder. It consumes the radius of a cylinder's
base disk and its height; it computes the volume of the cylinder.

Exercise 3.3.3. Develop area-cylinder. The program consumes the radius of the cylinder's
base disk and its height. Its result is the surface area of the cylinder.

Exercise 3.3.4. Develop the function area-pipe. It computes the surface area of a pipe, which
is an open cylinder. The program consumes three values: the pipe's inner radius, its length, and
the thickness of its wall.

Develop two versions: a program that consists of a single definition and a program that consists
of several function definitions. Which one evokes more confidence?

Exercise 3.3.5. Develop the program height, which computes the height that a rocket reaches
in a given amount of time. If the rocket accelerates at a constant rate g, it reaches a speed of g - ¢
in t time units and a height of 1/2 * v * ¢ where v is the speed at .

-38-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Exercise 3.3.6. Recall the program Fahrenheit->Celsius from exercise 2.2.1. The program
consumes a temperature measured in Fahrenheit and produces the Celsius equivalent.

Develop the program celsius->Fahrenheit, which consumes a temperature measured in
Celsius and produces the Fahrenheit equivalent.

Now consider the function

;5 I : number -> number
;; to convert a Fahrenheit temperature to Celsius and back
(define (I f)

(Celsius->Fahrenheit (Fahrenheit->Celsius f)))

Evaluate (1 32) by hand and using DrScheme's stepper. What does this suggest about the
composition of the two functions?

2 See The World Book Encyclopedia 1993, Weights and Measurements.

-39-

= _—
FlyHeart.com

TEAM FLY PRESENTS



Section 4

Conditional Expressions and Functions

For many problems, computer programs must deal with different situations in different ways. A
game program may have to determine whether an object's speed is in some range or whether it is
located in some specific area of the screen. For an engine control program, a condition may
describe whether or when a valve is to be opened. To deal with conditions, we need to have a
way of saying a condition is true or false; we need a new class of values, which, by convention,
are called sooLean (or truth) values. This section introduces booleans, expressions that evaluate to
Booleans, and expressions that compute values depending on the boolean result of some
evaluation.

4.1 Booleans and Relations [

Consider the following problem statement:

Company XYZ & Co. pays all its employees $12 per A yplc I employee works between
20 and 65 hours per week. Develop a program that d termines the wage of an employee from the
number of hours of work, if the number is within the pre per range.

The italic words highlight the new part ( (comp Tt(;) section 2.3). They imply that the program
must deal with its input in one way if it is in the 1eg1t1mate range, and in a different way if it is
not. In short, just as peopl © reason about conditions, programs must compute in a
conditional manner. \

Conditions are nothing nevy;\iIn mathematics we talk of true and false claims, which are
conditions. For example, a humber may be equal to, less than, or greater than some other number.
If x and y are numbers, we state these three claims about x and y with

1. x=y: "xisequal toy)";
2. x<y: xis strictly less than y";
3. x>y: xis strictly greater than y".

For any specific pair of (real) numbers, exactly one of these claims holds. If x =4 and y = 5, the
second claim is a true statement, and the others are false. If x = 5 and y = 4, however, the third
claim is true, and the others are false. In general, a claim is true for some values of the variables
and false for others.

In addition to determining whether an atomic claim holds in a given situation, it is sometimes
important to determine whether combinations of claims hold. Consider the three claims above,
which we can combine in several ways:

1. x=
2. x
-40-

y and x<y and x>y
y o x<y o x>y

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



3. x=y or x<y.

The first compound claim is false because no matter what numbers we pick for x and y, two of
the three claims are false. The second compound claim, however, always holds no matter what
numbers we pick for x and y. Finally, the third kind of compound claim is the most important of
all, because it is true in some cases and false in others. For example, it holds whenx =4, y =4
and x =4, y =15, but it is false if x =5 and y = 3.

Like mathematics, Scheme has ““words" for expressing truth and falsity, for stating atomic
claims, for combining claims into compound claims, and for expressing that a claim is true or
false. The ““word" for true is t rue and the “*word" for false is false. If a claim concerns the
relationship between two numbers, it can typically be expressed with a reLaTiONAL OPERATION, fOT
example, =, <, and >.

Translating the three mathematical claims from above follows our well-known pattern of writing
a left parenthesis, followed by the operator, its arguments, and a right parenthesis:

x y): xisequal to)";
x y): xis strictly less than y"; and (]
x y): xis strictly greater than y". —~ |

W N =
N

vV A

We will also encounter <= and >= as relational operators

Similarly, a false claim & Rlua‘te{

(= 4 5)
= false

Expressing compound conditions in Scheme is equally natural. Suppose we want to combine (=
x y) and (< y z) so that the compound claim holds if both conditions are true. In Scheme we
would write

(and (= x y) (< y z))

to express this relationship. Similarly, if we want to formulate a compound claim that is true if
(at least) one of two claim holds, we write

(or (= xvy) (< y z))
Finally, when we write something such as
(not (= x vy))

we state that we wish the negation of a claim to be true.”
41-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Compound conditions, like atomic conditions, evaluate to t rue or false. Consider the following
compound condition:

(and (= 5 5) (< 5 0))

It consists of two atomic claims: (= 5 5) and (< 5 6). Both evaluate to true, and therefore the
evaluation of the and-expression continues as follows:

= (and true true)
= true

The last step follows because, if both parts of an and-expression are t rue, the entire expression
evaluates to t rue. In contrast, if one of the two claims in an and-expression evaluates to false,
the and-expression evaluates to false:

(and (= 5 5) (< 5 5))
(and true false)
= false

The evaluation rules for or and not are similarly intuitive.

The next few sections will explain why programming requi
reasoning about them.

Exercise 4.1.1. What are the results of the fol\\lowi\“

1. (and (> 4 3) (<= 10 100))(\
2. (or (> 4 3) (= 10 100))
3. (not (= 2 3)) .

Exercise 4.1.2. What are
1. > x 3)
2. (and (> 4 x) (> x 3))
3.

(= (* x x) x)

for(a)x = 4,(b)x = 2,and(¢)x = 7/2 7

4.2 Functions that Test Conditions

Here is a simple function that tests some condition about a number:

;7 1s-5? : number -> boolean
;7 to determine whether n is equal to 5
(define (is-57? n)

(=n 5))

The function produces true if, and only if, its input is equal to 5. Its contract contains one novel
element: the word boolean. Just like number, boolean represents a class of values that is built
into Scheme. Unlike number, boolean consists of just two values: true and false.

-42-

X -
FlyHeart.com

TEAM FLY PRESENTS



Here is a slightly more interesting function with a boolean output:

;; 1s-between-5-6? : number -> boolean
;; to determine whether n is between 5 and 6 (exclusive)
(define (is-between-5-67? n)

(and (< 5 n) (< n 6)))

It consumes a number and produces true if the number is between, but does not include, 5 and 6.

One good way to understand the function is to say that it describes the following interval on the
number line:

£ 3

5 A

3 10

[ = J—

Interval Boundaries: An interval boundary marked with **(" or **)" is excluded from the interval;
an interval boundary marked with "*[" or "*]" is included.

The following third function from numbers to boolean values represents the most complicated
form of interval: O~ \ ‘
~

;; 1s-between-5-6-or-over-10? : number -> boolean
;; to determine whether n is between 5 and 6 e
;; or larger than or equal to 10
(define (is-between-5-6-or-over-10°? n
(or (is-between-5-6? n) (>= n_10)))"

The left part of the interval is the portion between, but not including, 5 and 6; the right one is the
infinite line starting at, and including, 10. Any point on those two portions of the line satisfies the
condition expressed in the function is-between-5-6-or-over-1072.

All three functions test numeric conditions. To design or to comprehend such functions, we must
understand intervals and combinations (also known as unions) of intervals. The following

exercises practice this important skill.

Exercise 4.2.1. Translate the following five intervals on the real line into Scheme functions that
accept a number and return true if the number is in the interval and fa1se if it is outside:

1. the interval (3,7]:

X -
FlyHeart.com

TEAM FLY PRESENTS



2. the interval [3,7]:

0 5 10

3. the interval [3,9):

} I 1 I T : I T i A I I
0 5 10
4. the union of (1,3) and (9,11)
| [ L k| | l | | | [ L il
I [y T 1 i I I i ] [y T 2] A
0 5 10 | |

1. (define (iﬁ—ﬁﬁtgrv N  .'
(and (< -3\x)

2. (define (in-interval-2? x)
(or (K x 1) (> x 2)))

3. (define (in-interval-3? x)
(not (and (<= 1 x) (<= x 5))))

Also formulate contracts and purpose statements for the three functions.
Evaluate the following expressions by hand:

1. (in-interval-12 -2)
2. (in-interval-2? -2)
3.

(in-interval-3? -2)
Show the important steps. Use the pictures to check your results.

Exercise 4.2.3. Mathematical equations in one variable are claims about an unknown number.
For example, the quadratic equation

-44-

X -
FlyHeart.com

TEAM FLY PRESENTS



224 2.24+1=0

is a claim concerning some unknown number x. For x = - 1, the claim holds:

Z . ' 4%E . o, -
L A I S [ g s ]
= tE i T & .

]

. P
4 T L
1 &

[y
[y
[y

-
—
-

=

A

L
[+

(=1

For x =1, it doesn't, because
2+ 2z 4+1=(12+2.(1)+1=14+2+1=4,
and 4 is not equal to 0. A number for which the claim holds is called a solution to the equation.

We can use Scheme to formulate equational conditions as a function. If someone then claims to
have a solution, we can use the function to test whether the proposed solution is, in fact, a
solution. Our running example corresponds to the function

;7 equationl : number -> boolean
;; to determine whether x is a solution for x* + 2 - x + 1 = 0
(define (equationl x) P

(= (+ (* x x) (+ (* 2 x) 1)) 0)) [

When we apply equationl to some number, we get true or false:

(equationl -1)
= true

and
(equationl +1)
= false
Translate the followiﬁg”‘e uati into | cheme functions:

Determine whether 10, 12, or 14 are solutions of these equations.

Exercise 4.2.4. Equations are not only ubiquitous in mathematics, they are also heavily used in
programming. We have used equations to state what a function should do with examples, we
have used them to evaluate expressions by hand, and we have added them as test cases to the
Definitions window. For example, if our goal is to define Fahrenheit->celsius, we might
have added our examples as test cases as follows:

;; test expression:
Fahrenheit->Celsius 32)

(
;; expected result:
0

and

-45-

X -
FlyHeart.com

TEAM FLY PRESENTS



;; test expression:
(Fahrenheit->Celsius 212)
;; expected result:

100

After clicking the Execute button we can compare the two numbers. If they are equal, we know
our function works.

As our results become more and more complex, comparing values becomes more and more
tedious. Using =, we can instead translate these equations into claims:

(= (Fahrenheit->Celsius 32)
0)

and

(= (Fahrenheit->Celsius 212)
100)

Now, if all claims evaluate to true, we know that our function works for the specified examples.

If we see a false anywhere, something is still wrong. | |
Jd |

Reformulate the test cases for exercises 2.2.1,2.2.2, 2.2.3, anci“~2.2.4 as“claiims.

Testing: Writing tests as claims is good practice, thoug | need to know more about equality to
develop good automatic tests. To do so, we resume the discussion of equahty and testing in
section 17.8.

\ional"’ Functions

4.3 Conditionals anfdfii‘?ﬁ\Coxn;

, ‘level of in erest for saving accounts. The more a customer deposits,
the more the bank pays Ir such arre ements, the interest rate depends on the interval into
which the savings amount f Is. To assist their bank clerks, banks use interest-rate functions. An
interest function consumes the amount that a customer wishes to deposit and responds with the
interest that the customer receives for this amount of money.

Our interest rate function must determine which of several conditions holds for the input. We say
that the function is a conprrionaL Function, and we formulate the definition of such functions using
CONDITIONAL EXPRESSIONS. The general shape of a conditional expression is

(cond (cond
[question answer] or [question answer]
[question answer]) [else answer])

The dots indicate that a cond-expression may contain an arbitrary number of cond-lines. Each
cond-line, also called a cond-clause, contains two expressions, called conpirion and aNswer. A
condition is a conditional expression that involves the parameters; the answer is a Scheme
expression that computes the result from the parameters and other data if the conditional
expression holds."

-46-

X -
FlyHeart.com

TEAM FLY PRESENTS



Conditional expressions are the most complicated form of expressions we have encountered and
will encounter. It is therefore easy to make mistakes when we write them down. Compare the
following two parenthesized expressions:

(cond (cond
[(< n 10) 5.0] [(< n 10) 30 12]
[(< n 20) 5] [(> n 25) false]
[(< n 30) true]l) [(>n 20) 0])

The left one is a valid cond-expression because each cond-line contains two expressions. In
contrast, the right one is not a valid cond-expression. Its first line contains three expressions
instead of two.

When Scheme evaluates a cond-expression, it determines the value of each condition, one by
one. A condition must evaluate to true or false. For the first condition that evaluates to true,
Scheme evaluates the corresponding answer, and the value of the answer is the value of the
entire cond-expression. If the last condition is else and all other conditions fail, the answer for
the cond is the value of the last answer expression.'

Here are two simple examples:

(cond (con&@i:‘J\
[ (<= n 1000) .040] . [ (<= n"1000) .040]
[ (<= n 5000) .045] <= n 5000) .045]
[ (<= n 10000) .055] (<= _n, 10000) .055]
[(> n 10000) .0607) e .0607)

If we replace n with 20000, the first three condif[iori‘ uate to £ ~1se in both expressions. For
10000), evaluates to true and

expressions, (<= 10000 1@ \ 5 0000 5000) evahuneto false and (<= 10000 10000)
evaluates to true.

Exercise 4.3.1. Decide Wh °h of the following two cond-expressions is legal:

(cond (cond
[(< n 10) 20] [(<n 10) 201
[ (> n 20) 0] [(and (> n 20) (<= n 30))]
[else 1]) [else 1])

Explain why the other one is not. Why is the following illegal?
(cond [(< n 10) 20]
[* 10 n]

[else 555]) ;

Exercise 4.3.2. What is the value of

(cond
[ (<= n 1000) .040]
[ (<= n 5000) .045]
[ (<= n 10000) .055]
[(> n 10000) .0607])

when n is (a) 500, (b) 2800, and (¢) 150007?

-47-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 4.3.3. What is the value of

(cond
[ (<= n 1000) (* .040 1000)]
[ (<= n 5000) (+ (* 1000 .040)
(* (= n 1000) .045))]
[else (+ (* 1000 .040)
(* 4000 .045)
(* (- n 10000) .055))1)

when n is (a) 500, (b) 2800, and (¢) 150007

With the help of cond-expressions, we can now define the interest rate function that we
mentioned at the beginning of this section. Suppose the bank pays 4% for deposits of up to
$1,000 (inclusive), 4.5% for deposits of up to $5,000 (inclusive), and 5% for deposits of more
than $5,000. Clearly, the function consumes one number and produces one:

;; ilnterest-rate : number -> number
;; to determine the interest rate for the given amount
(define (interest-rate amount) ...)

Furthermore, the problem statement provides three examples: <~ ||

( (interest-rate 1000) .040)
(= (interest-rate 5000) .045)
(= (interest-rate 8000) .050)

W=

N

an expressions when possible.

NN

Recall that examples are now formulated as boole

The body of the function mustba cond /xﬁf@\:\s/swn that distinguishes the three cases mentioned
in the problem statement. Here is a sketc

(cond N\
[ (<= amount 1000) .~.
[ (<= amount 5000) ...]
[ (> amount 5000) ...])

\

Using the examples and the outline of the cond-expression, the answers are easy:

(define (interest-rate amount)
(cond
[ (<= amount 1000) 0.040]
[ (<= amount 5000) 0.045]
[ (> amount 5000) 0.0507))

Since we know that the function requires only three cases, we can also replace the last condition
with else:

(define (interest-rate amount)
(cond
[ (<= amount 1000) 0.040]
[ (<= amount 5000) 0.045]
[else 0.050]))

-48-

X -
FlyHeart.com

TEAM FLY PRESENTS



When we apply interest-rate to an amount, say, 4000, the calculation proceeds as usual.
Scheme first copies the body of the function and replaces amount by 4000:

(interest-rate 4000)
= (cond
[ (<= 4000 1000) 0.040]
[ (<= 4000 5000) 0.045]
[else 0.050])
= 0.045

The first condition is false but the second one is true, so the resultis 0.045 or 4.5%. The

evaluation would proceed in the same manner if we had used the variant of the function with (>
amount 5000) instead of else

4.4 Designing Conditional Functions

Developing conditional functions is more difficult than designing a plain function. The key is to
recognize that the problem statement lists cases and to identify the different cases. To emphasize
the importance of this idea, we introduce and discuss a design recipe for deslgnmg conditional
functions. The new recipe introduces a new step, pata anaLysis, which requlres a programmer to
understand the different situations that the problem statement discusses. Iﬁ also modifies the
Examples and the Body steps of the design recipe in sectlon 2.5: \

ine that a problem statement deals with

o Data Analysis and Definition: After we deter t )
The second step is a paTa DEFINITION, an

distinct situations, we must identify all of thef
idea that we will explore a lot more.
For numeric functions, a good stra
intervals that correspondto a spe
rate function: o\

4 y draw a number line and to identify the
ituation. Consider the contract for the interest-

Y inter \ : number -> number
;5 to detej ine the interest rate for the given amount >= 0
(define (interest-rate amount) ...)

It inputs non-negative numbers and produces answers for three distinct situations:

L 1 1 L L H L | 'l L | 'l -
I |

0 &, 000 10, 000

For functions that process booleans, the cond-expression must distinguish between
exactly two situations: true and false. We will soon encounter other forms of data that
require case-based reasoning.

o Function Examples: Our choice of examples accounts for the distinct situations. At a
minimum, we must develop one function example per situation. If we characterized the
situations as numeric intervals, the examples should also include all borderline cases.

-49-

X -
FlyHeart.com

TEAM FLY PRESENTS



-50-

For our interest-rate function, we should use 0, 1000, and 5000 as borderline cases.
In addition, we should pick numbers like 500, 2000, and 7000 to test the interiors of the
three intervals.

The Function Body -- Conditions: The function's body must consist of a cond-
expression that has as many clauses as there are distinct situations. This requirement
immediately suggests the following body of our solution:

° (define (interest-rate amount)

° (cond

Next we must formulate the conditions that characterize each situation. The conditions
are claims about the function's parameters, expressed with Scheme's relational operators
or with our own functions.

The number line from our example translates into the following three conditions:
(and (<= 0 amount) (<= amount 1000)) N |

1.
2. (and (< 1000 amount) (<= amount 5000))
3. (< 5000 amount)

Adding these conditions to the function produce
definition: \

(define (interest—raté}amoti
(cond |

-]
-]

At this stage, a prOg‘ramrﬁ hould check that the chosen conditions distinguish inputs in
an appropriate manner. Specifically, if some input belongs to a particular situation and
cond-line, the preceding conditions should evaluate to fa1se and the condition of the line
should evaluate to true.

The Function Body -- Answers: Finally, it is time to determine what the function
should produce for each cond-clause. More concretely, we consider each line in the
cond-expression separately, assuming that the condition holds.

In our example, the results are directly specified by the problem statement. They are 4.0,
4.5,and 5.0. In more complicated examples, we may have to determine an expression
for each cond-answer following the suggestion of our first design recipe.

Hint: If the answers for each cond-clause are complex, it is good practice to develop one
answer at a time. Assume that the condition evaluates to true, and develop an answer
using the parameters, primitives, and other functions. Then apply the function to inputs
that force the evaluation of this new answer. It is legitimate to leave **. . ." in place of the
remaining answers.

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



o Simplification:

When the definition is complete and tested, a programmer might wish to check whether
the conditions can be simplified. In our example, we know that amount is always greater
than or equal to 0, so the first condition could be formulated as

(<= amount 1000)

Furthermore, we know that cond-expressions are evaluated sequentially. That is, by the
time the second condition is evaluated the first one must have produced fz1se. Hence we
know that the amount is nof less than or equal to 1000, which makes the left component
of the second condition superfluous. The appropriately simplified sketch of interest-
rate is as follows:

(define
(cond

[ (<= amount 1000)
[ (<= amount 5000)
[ (> amount 5000)

-1))

(interest-rate amount)

-]
-]

d \

Figure 6 summarizes these suggestions on the design of conditional funcqoms Read it in
conjunction with figure 4 and compare the two rows for "Body." Reread the table when
designing a conditional function! )

Phase Goal ‘Act1v1ty
Data to determine the . 1nspe\t the prc)b}em statement for distinct situations
Analysis distinct situations a | | fsenu erate all possible situations
function deal "'Wlth
Examples choose at least one example per situation sfor
" |intervals or enumerations, the examples must
include borderline cases
Body (1) to formulate a write down the skeleton of a cond expression, with
Conditions conditional expression |one clause per situation «formulate one condition per
situation, using the parameters sensure that the
conditions distinguish the examples appropriately
Body (2) to formulate the deal with each cond-line separately sassume the
Answers answers for the cond- |condition holds and develop a Scheme expression
clauses that computes the appropriate answer for this case

Figure 6: Designing the body of a conditional function

(Use with the recipe in figure 4 (pg. 5))

Exercise 4.4.1. Develop the function interest. Like interest-rate, it consumes a deposit
amount. Instead of the rate, it produces the actual amount of interest that the money earns in a
year. The bank pays a flat 4% for deposits of up to $1,000, a flat 4.5% per year for deposits of up
to $5,000, and a flat 5% for deposits of more than $5,000.

-51-

.~

FlyHeart.com

TEAM FLY PRESENTS



Exercise 4.4.2. Develop the function tax, which consumes the gross pay and produces the
amount of tax owed. For a gross pay of $240 or less, the tax is 0%; for over $240 and $480 or
less, the tax rate is 15%; and for any pay over $480, the tax rate is 28%.

Also develop netpay. The function determines the net pay of an employee from the number of
hours worked. The net pay is the gross pay minus the tax. Assume the hourly pay rate is $12.

Hint: Remember to develop auxiliary functions when a definition becomes too large or too
complex to manage.

Exercise 4.4.3. Some credit card companies pay back a small portion of the charges a customer
makes over a year. One company returns

1. .25% for the first $500 of charges,

2. .50% for the next $1000 (that is, the portion between $500 and $1500),
3. .75% for the next $1000 (that is, the portion between $1500 and $2500),
4. and 1.0% for everything above $2500.

Thus, a customer who charges $400 a year receives $1.00, which is 0.25 -1/100 - 400, and one
who charges $1,400 a year receives $5.75, which is 1.25=0.25 - 1/ 100 SOO for the first $500
and 0.50 - 1/100 - 900 = 4.50 for the next $900. ‘

Determine by hand the pay-backs for a customer who ch 'g ‘d 000 and one who charged
$2600. ' \“~

Define the function pay-back, which consum
corresponding pay-back amount.

ha:rgl imount and computes the

a ’l,;aim‘uxabout numbers; a quadratic equation is a special kind of
ns (in ong variable) have the following general shape:

Exercise 4.4.4. An equat1
equation. All quadra :

arx’+hox+e=0.
In a specific equation, a, b and c are replaced by numbers, as in
2.72°44.242=0
or
Loz + 0.z +(-1)=0.
The variable x represents the unknown.

Depending on the value of x, the two sides of the equation evaluate to the same value (see
exercise 4.2.3). If the two sides are equal, the claim is true; otherwise it is false. A number that

makes the claim true is a solution. The first equation has one solution, - 1, as we can easily
check:

2o(=1)*+4.(-1)+2=2-44+2=0.

-52-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



The second equation has two solutions: + 1 and - 1.

The number of solutions for a quadratic equation depends on the values of a, b, and c. If the
coefficient a is 0, we say the equation is degenerate and do not consider how many solutions it
has. Assuming a is not 0, the equation has

1. two solutions if B*>4 - qa - c,
2. one solution if »*=4-a - ¢, and
3. no solutionifb’><4-a-c.

To distinguish this case from the degenerate one, we sometimes use the phrase proper quadratic
equation.

Develop the function how-many, which consumes the coefficients a, b, and c of a proper
quadratic equation and determines how many solutions the equation has:

(how-many 1 0 -1) = 2
(how-many 2 4 2) =1

Make up additional examples. First determine the number of solutlons by ‘hand then with
DrScheme.

“ The use of brackets, that'is | 'dff"j"\, in place of parentheses is optional, but it sets apart the
conditional clauses from ther‘ \xpressmns and helps people read functions.

2 If the cond-expression has no else clause and all conditions evaluate to £z1se, an error is
signaled in Beginning Student Scheme.

-53-

X -
FlyHeart.com

TEAM FLY PRESENTS



€y -

Section 5

Symbolic Information

These days computers mostly process symbolic information such as names, words, directions, or
images. All modern programming languages support at least one way of representing symbolic
information. Scheme supports several ways to express symbolic information: symbols, strings,
(keyboard) characters, and images. A symbol is a sequence of keyboard characters'® preceded by
a single forward quotation mark:

'the 'dog 'ate 'a 'chocolate 'cat! 'two”3 'and%$so%on?
Like a number, a symbol has no inherent meaning. It is up to the function's user to relate
symbolic data and real-world information, though the connection is typically obvious in a
specific context. For example, 'east will usually refer to the direction where the sun rises,
'professor will be the title of a person teaching and researching at a university.

planets0.ss - Dr3cheme

File Edit Windows Show Language Scheme TQB@%@;\H%hi AS

[planets.ss

\“ N NN ) :
(define .| Q, Check Syntax \‘\"‘M\‘a‘!\‘l L‘“T @ Analyze | el Step | - Execute| @ Break

[([define MERCURY

(define VENUS

(define EARTH

(define MARS

#

K

I

1:1

Collectl 29016064 Unlocked not running |

-54-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS




Figure 7: The planets as images in DrScheme

Like numbers, symbols are atomic pieces of data. Their purpose is to represent things such as
family and first names, job titles, commands, announcements, and so on. Scheme provides only
one basic operation on symbols: symbo1l=?, a comparison operation. It consumes two symbols
and produces true if and only if the two symbols are identical:

1. (symbol=? 'Hello 'Hello) = true

2. (symbol=? 'Hello 'Howdy) = false

3. (symbol=? 'Hello x) = true if x stands for 'Hello
4. (symbol=? 'Hello x) = false if x stands for 'Howdy

Symbols were first introduced to computing by researchers in artificial intelligence who wanted
to design functions that could have conversations with people. Consider the function reply,
which replies with some remark to the following greetings: *“good morning," **how are you,"
““good afternoon," and **good evening." Each of those short sentences can be represented as a
Synﬂxﬂl'GoodMorning,'HowAreYou,'GoodAfternoon,and'GoodEvenLﬂg.Thus,reply
consumes a symbol and replies with a symbol: ~ |
~.

;7 reply : symbol -> symbol
;; to determine a reply for the greeting
(define (reply s) ...)

Furthermore, the function must distinguish among four si .:\aj‘tions, implying, according to our
design recipe from section 4.4, a four-clause cond-expression:

(define (reply s)

(cond
[ (symbol="? Lo
[ (symbol ou?) ...]
[ (symbol=? s GoodAﬁtérnoon) cod]
[ (symbol=? s :EodEvening) ... 1))

The cond-clauses match the four symbols, which is naturally much easier than matching four
intervals.

From this function template it is a short step to the final function. Here is one version of reply:

(define (reply s)

(cond
[ (symbol=? s 'GoodMorning) 'Hi]
[ (symbol=? s 'HowAreYou?) 'Fine]
[ (symbol=? s 'GoodAfternoon) 'INeedANap]
[ (symbol=? s 'GoodEvening) 'BoyAmITired]))
We can think of many different ways of how to replace the .. ." in the template with replies.

But no matter what we replace them with, the basic template could be defined without concern
for the output of the function. We will see in subsequent sections that this focus on the input data
is actually the norm and that concern for the output data can be postponed.

-55-

X -
FlyHeart.com

TEAM FLY PRESENTS



A Note on Strings: A string is a second form of symbolic data. Like a symbol, a string consists
of a sequence of keyboard characters, but they are enclosed in string quotes:

"the dog" "isn't" "made of" "chocolate" "two”3" "and so on?"

In contrast to symbols, strings are not atomic. They are compound data, which we discuss later in
the book. For now, we use strings as if they were fancy symbols; the only operation needed is
string=2?, which compares two strings the way symbol=2 compares two symbols. Otherwise we
ignore strings, and when we use them, we act as if they were symbols.

A Note on Images: An image is a third form of symbolic data, and it is fun to develop functions
that process images. Like symbols, images don't have any a priori meaning, but we tend to
connect them easily with the intended information.

DrScheme supports images: see figure 7, which shows the beginning of a function that
manipulates planet pictures. Images are values like numbers and booleans. They can therefore be
used inside of expressions. Most often though, we give images names because they are typically
used by several functions. If we don't like the picture, it is then easily replaced with a different
one (see section 3.2).

S.1 Finger Exercises with Symbols |

Exercise 5.1.2. Develop the function check-gue
target. Depending on how guess relates\; )
three answers: 'TooSmall, 'Perfect, or

The function implements f a tWo player number guessing game. One player picks a
random number between | .and 99999: ‘The other player's goal is to determine this number, called
target, with the least number of guesses. To each guess, the first player responds with one of
the three responses that check-guess implements.

The function check-guess and the teachpack guess.ss implement the first player. The
teachpack picks the random number, pops up a window in which the second player can choose
digits, and hands over the guess and the target to check-guess. To play the game, set the
teachpack to guess. ss using the Language | Set teachpack option. Then evaluate the
expression

(guess-with-gui check-guess)
after check-guess has been thoroughly tested.
Exercise 5.1.3. Develop the function check-guess3. It implements a larger portion of the

number guessing game of exercise 5.1.2 than the function check-guess. Now the teachpack
hands over the digits that the user guesses, not the number that they form.

To simplify the problem a little bit, the game works with only three numbers. Thus, check-
guess3 consumes three digits and a number. The first digit is the least significant, the third one

-56-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



is the most significant. The number is called target and represents the randomly chosen number.
Depending on how guess, the number determined by the three digits, relates to target, check-
guess3 produces one of the following three answers: ' TooSmall, 'Perfect, Or 'TooLarge.

The rest of the game is still implemented by guess.ss. To play the game with check-guess3,
evaluate

(guess-with-gui-3 check-guess3)
after the function has been thoroughly tested.
Hint: Remember to develop an auxiliary function per concept.

Exercise 5.1.4. Develop what-kind. The function consumes the coefficients a, b, and c of a
quadratic equation. It then determines whether the equation is degenerate and, if not, how many
solutions the equation has. The function produces one of four symbols: 'degenerate, 'two,

'one, O 'none.

Hint: Compare with exercise 4.4.4. (]
‘ \
||
Exercise 5.1.5. Develop the function check-color. It 1mplements akey portion of a color
guessing game. One player picks two colors for two squares; k“e call those' targets The other one

tries to guess which color is assigned to which square;\

1. 'perfect, if the first target is e/qual to ?e ﬁrs

second guess; ‘
2. 'OneColorAtCorrectE’"ﬁ i
guess is equal to the s
'OneColorOcet

(98]

4. 'NothingCorrec

These four answers are the only answers that the first player gives. The second player is to guess
the two chosen target colors with as few guesses as possible.

The function check-color simulates the first player's checking action. It consumes four colors;
for simplicity, we assume that a color is a symbol, say, ' red. The first two arguments to check-
color are "“targets," the latter two are ““guesses." The function produces one of the four answers.

When the function is tested, use the teachpack to master.ss to play the color-guessing game."”
The teachpack provides the function master. Evaluate (master check-color) and choose
colors with the mouse.

© Not all keyboard characters are legal in symbols. For example, a blank space or a comma are
illegal.

7 MasterMind, the commercial version of this game, is played in a different manner.

-57-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Section 6

Compound Data, Part 1: Structures

The input of a function is seldom a single measurement (number), a single switch position
(boolean), or a single name (symbol). Instead, it is almost always a piece of data that represents
an object with many properties. Each property is a piece of information. For example, a function
may consume a record about a CD; the relevant information might include the artist's name, the
CD title, and the price. Similarly, if we are to model the movement of an object across a plane
with a function, we must represent the position of the object in the plane, its speed in each
direction, and possibly its color. In both cases, we refer to several pieces of information as if they
were one: one record and one point. In short, we compounnp several pieces of data into a single
piece of data.

Scheme provides many different methods for compounding data. In this section we deal with
structures. A structure combines a fixed number of values into a single plFCﬁt of data. In section 9,
we will encounter a method for combining an arbitrarily large number of Values into a single
piece of data.

6.1 Structures

much like a Cartesian point. It has an x¢
horizontal direction, and it hasay coord' , ch tells us where the pixel is located in the
downwards vertical direction. Given the two numbers we can locate a pixel on the monitor, and
SO can a computer pro -

DrScheme's teachpacks re fesent pixels with posn structures. A posn structure combines two
numbers. That is, a posn is a single value that contains two values. We can create a posn
structure with the operation make-posn, which consumes two numbers and makes a posn. For
example,

(make-posn 3 4)
(make-posn 8 6)

(make-posn 5 12)

are posn structures. Each of these structures has the same status as a number as far as
computations are concerned. Both primitive operations and functions can consume and produce
structures.

Now consider a function that computes how far some pixel is from the origin. The contract,
header, and purpose statement are easy to formulate:

;; distance-to-0 : posn -> number
;; to compute the distance of a-posn to the origin

-58-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



(define (distance-to-0 a-posn) ...)

In other words, distance-to-0 consumes a single value, a posn structure, and produces a single
value, a number.

We already have some input examples, namely, the three posn structures mentioned above. What
we need next are examples that relate inputs and outputs. For points with 0 as one of the
coordinates, the result is the other coordinate:

(distance-to-0 (make-posn 0 5))

=5

and
(distance-to-0 (make-posn 7 0))
7

In general, we know from geometry that the distance from the origin to a position with
coordinates x and v is distance

Jmi4-y’.
Thus, o~ ||
~

(distance-to-0 (make-posn 3 4))
=5

(distance-to-0 (make-posn 8 6))

=10
(distance-to-0 (make—posn/\
=13

Once we have examples, we rattention to the definition of the function. The
examples imply that-the desi cance-to-0 doesn't need to distinguish between different
situations. Still, we are stt k now, because distance-to-0 has a single parameter that
represents the entire pixel but we need the two coordinates to compute the distance. Put
differently, we know how to combine two numbers into a posn structure using make-posn and
we don't know how to extract these numbers from a posn structure.

Scheme provides operations for extracting values from structures.” For posn structures, Scheme
supports two such operations: posn-x and posn-y. The former operation extracts the x
coordinate; the latter extracts the y coordinate.

To describe how posn-x, posn-y, and make-posn are related, we can use equations that are
roughly analogous to the equations that govern addition and subtraction:

(posn-x (make-posn 7 0))
=7

and

(posn-y (make-posn 7 0))
=0

-59-

X -
FlyHeart.com

TEAM FLY PRESENTS



The equations only confirm what we already know. But suppose we introduce the following
definition:

(define a-posn (make-posn 7 0))

Then we can use the two operations as follows in the Interactions window:

(posn-x a-posn)
=7

(posn-y a-posn)
=0

Naturally, we can nest such expressions:

(* (posn-x a-posn) 7)
= 49

(+ (posn-y a-posn) 13)
=13

Now we know enough to complete the definition of distance-to-0. We ﬂ{now that the
function's a-posn parameter is a posn structure and that the stljucturé‘ contains two numbers,
which we can extract with (posn-x a-posn) and (posn- posn). Let““ti\‘s}}add this knowledge
to our function outline:

(define (distance-to-0 a-posn)
(posn-x a-posn)
(posn-y a-posn) ...)

Using this outline and the exam p1es ﬁthé ¢

(define (distar
(sqgrt -
(+ (sgr (posn \
(sqr (posn-y a-posn)))))

The function squares (posn-x a-posn) and (posn-y a-posn), which represent the x and y
coordinates, sums up the results, and takes the square root. With DrScheme, we can also quickly
check that our new function produces the proper results for our examples.
Exercise 6.1.1. Evaluate the following expressions:

1. (distance-to-0 (make-posn 3 4))

2. (distance-to-0 (make-posn (* 2 3) (* 2 4)))

3.

(distance-to-0 (make-posn 12 (- 6 1)))

by hand. Show all steps. Assume that sqr performs its computation in a single step. Check the
results with DrScheme's stepper.

6.2 Extended Exercise: Drawing Simple Pictures

-60-

X -
FlyHeart.com

TEAM FLY PRESENTS



DrScheme provides the graphics teachpack draw. ss, which introduces simple graphics
operations:

l. draw-solid-1ine, which consumes two posn structures, the beginning and the end of
the line on the canvas, and a color.

2. draw-solid-rect, which consumes four arguments: a posn structure for the upper-left
corner of the rectangle, a number for the width of the rectangle, another number for its
height, and a color.

3. draw-solid-disk, which consumes three arguments: a posn structure for the center of
the disk, a number for the radius of the disk, and a color.

4. draw-circle, which consumes three arguments: a posn structure for the center of the
circle, a number for the radius, and a color.

Each of the operation produces true, if it succeeds in changing the canvas as specified. We refer
to the action to the canvas as an errect, but we will ignore studying the precise nature of effects
until part VII. Also, if anything goes wrong with the operation, it stops the evaluation with an
error.

Each drawing operation also comes with a matching c1lear- operation: cl‘féar—solid—line,
clear-solid-rect, clear-solid-disk, and clear-circle. If these functions are applied to
the same arguments as their matching draw- function, they clear the corresponding shapes of the

First, the origin of the plane is in the upper-left corner. Second, y coordinates grow in the
downwards direction. Understanding the difference between this picture and the more
conventional Cartesian plane is critical for drawing shapes with programs.

Exercise 6.2.1. Evaluate the following expressions in order:

1. (start 300 300), which opens a canvas for future drawing operations;

2. (draw-solid-line (make-posn 1 1) (make-posn 5 5) 'red), which draws a red
line;

3. (draw-solid-rect (make-posn 20 10) 50 200 'blue), which draws a blue
rectangle of width 50 parallel to the line; and

4. (draw-circle (make-posn 200 10) 50 'red), which draws a red circle of radius 50
and a center point at the upper line of the rectangle.

5. (draw-solid-disk (make-posn 200 10) 50 'green), which draws a green disk of

radius 50 and a center point at the height of the upper line of the rectangle.

(stop), which closes the canvas.

@

-61-

X -
FlyHeart.com

TEAM FLY PRESENTS



Read the documentation for draw.ss in DrScheme's HelpDesk.

The definitions and expressions in figure 8 draw a traffic light. The program fragment illustrates
the use of global definitions for specifying and computing constants. Here, the constants
represent the dimensions of the canvas, which is the outline of the traffic light, and the positions
of three light bulbs.

;7 dimensions of traffic light
(define WIDTH 50)

(define HEIGHT 160)

(define BULB-RADIUS 20)
(define BULB-DISTANCE 10)

;; the positions of the bulbs

(define X-BULBS (quotient WIDTH 2)) 1 AN X

(define Y-RED (+ BULB-DISTANCE BULB-RADIUS)) - M .

(define Y-YELLOW (+ Y-RED BULB-DISTANCE-
RADIUS) ) ) <

(define Y-GREEN (+ Y-YELLOW BULB-D
RADIUS) ) ) \

n X-BULBS Y-RED) BULB-RADIUS

(draw—-circle (méﬁe—posn X-BULBS Y-YELLOW) BULB-RADIUS
'yvellow)

(draw-circle (make-posn X-BULBS Y-GREEN) BULB-RADIUS
'green)

Figure 8: Drawing a traffic light

Exercise 6.2.2. Develop the function clear-bulb. It consumes a symbol that denotes one of
the possible colors: 'green, 'yellow, or 'red, and it produces true. Its effect is *"to turn off"
the matching bulb in the traffic light. Specifically, it should clear the disk and display a circle of
the matching color instead.

Choice of Design Recipe: See section 5 for designing functions that consume one of an
enumeration of symbols.

-62-

X -
FlyHeart.com

TEAM FLY PRESENTS



Testing: When testing functions that draw shapes into a canvas, we ignore test expressions.
Although it is possible to implement appropriate test suites, the problem is beyond the scope of
this book.

Combining Effects: The primitive operations for drawing and clearing disks and circles produce
true if they successfully complete their task. The natural way to combine the values and the
effects of these functions is to use an and-expression. In particular, if exp1 and exp2 produce
effects and we wish to see the effects of exp2 after those of exp1, we write

(and expl exp2)
Later we will study effects in more detail and learn different ways to combine effects.

Exercise 6.2.3. Develop a function draw-bulb. It consumes a symbol that denotes one of the
possible colors: 'green, 'yellow, or 'red, and produces true. Its effect is *"to turn on" the
matching bulb in the traffic light.

Exercise 6.2.4. Develop the function switch. It consumes two symbols, each of which stands
for a traffic light color, and produces t rue. Its effects are to clear the bulb for the first color and
then to draw the second bulb. —~ |

Exercise 6.2.5. Here is the function next:

;; next : symbol -> symbol ,
;7 to switch a traffic light's curren
(define (next current-color) <

return the next one

(cond N Q
[ (and (symbol=? current-colc éd}j(éwitch 'red 'green))
'green] > \ -
[ (and (symbol=2 “VPyellow) (switch 'yellow 'red))
'red] |\
[ (and (symbol=? current=color 'green) (switch 'green 'yellow))
'yvellow])) ° ’

It consumes the current color of a traffic light (as a symbol) and produces the next color that the
traffic light shows. That is, if the input is 'green, it produces 'yellow; ifitis 'yellow, it
produces 'red; and if it is ' red, it produces 'green. Its effect is to switch the traffic light from
the input color to the next color.

Replace the last three lines of the program fragment in figure 8 with (draw-bulb 'red). This
creates a traffic light that is red. Then use next to switch the traffic light four times.

6.3 Structure Definitions

In the preceding section we explored one particular class of structures: the posn structures. A
posn structure combines two numbers, and it is useful to represent pixels. If we wish to represent
employee records or points in three-dimensional space, however, posns are useless. DrScheme
therefore permits programmers to define their own structures so that they can represent all kinds
of objects with a fixed number of properties.

-63-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



A STRUCTURE DEFINITION 18, as the term says, a new form of definition. Here is DrScheme's definition
Ofposn:

(define-struct posn (x y))

When DrScheme evaluates this structure definition, it creates three operations for us, which we
can use to create data and to program:

1. make-posn, the consTrRUCTOR, Which creates posn structures;
2. posn-x, a SELECTOR, Which extracts the x coordinate;
3. posn-vy, also a selector, which extracts the y coordinate.

In general, the names of these new operations are created by prefixing the name of the structure
with ““make-" and by postfixing the name with all the field names. This naming convention
appears to be complicated but, with some practice, it is easy to remember.

Now consider the following example:

(define-struct entry (name zip phone))

A
1
| |

|

The structure represents a simplified entry into an address book. Eachenu‘ﬁy combines three

values. We also say that each entry structure has three fields: name, zip,“‘ahd phone. Because
there are three fields, the constructor make-entry consumes three values. For example,

(make-entry 'PeterLee 15270 "606-7771

creates an entry structure with 'peterl
7771 in the phone-field. v

One way to think of a. asa b x with as many compartments as there are fields:

1ﬁame k47 bhone
|'PeterLee [15270 15270
'PeterLeel5270'606-7771

The italicized labels name the fields. By putting values in the compartments, we illustrate
specific entry structures.

The define-struct definition of entry also introduces new selectors:

entry-name entry-zip entry-phone

Here is how we can use the first one:

(entry-name (make-entry 'PeterLee 15270 '606-7771))
= 'Peterlee

If we give the structure a name,

(define phonebook (make-entry 'PeterLee 15270 '606-7771))

-64-

X -
FlyHeart.com

TEAM FLY PRESENTS



then we can use the selectors in the Interactions window to extract the data from the three
fields:

(entry-name phonebook)
'Peterlee

(entry-zip phonebook)
15270

(entry-phone phonebook)
'606-7771

Put more graphically, a constructor creates a box with several compartments and puts values in it.
A selector reveals the contents of a particular compartment, but leaves the box alone.

Here is one final example, a structure for representing rock stars:

(define-struct star (last first instrument sales))

It defines the class of star structures, each of which has four fields. Accordlngly, we get five
new primitive operations:

make-star star-last star-first

The first is for constructing star structures; the others Are
values from a star structure.

(make-star
(make-star

(make-star 'Egrﬁé
To select the first name of a\\vé}:ar structure called £, we use
(star-first E)
Other fields are extracted with other selectors.
Exercise 6.3.1. Consider the following structure definitions:

define-struct movie (title producer))
define-struct boyfriend (name hair eyes phone))

define-struct CD (artist title price))

NhAwLDD -

(

(

(define-struct cheerleader (name number))

(

(define-struct sweater (material size producer))

What are the names of the constructors and the selectors that each of them adds to Scheme?
Draw box representations for each of these structures.

-65-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 6.3.2. Consider the following structure definition

(define-struct movie (title producer))
and evaluate the following expressions:

1. (movie-title (make-movie 'ThePhantomMenace 'Lucas))
2. (movie-producer (make-movie 'TheEmpireStrikesBack 'Lucas))

Now evaluate the following expressions, assuming x and y stand for arbitrary symbols:

(movie-title (make-movie x y))

1.
2. (movie-producer (make-movie x y))

Formulate equations that state general laws concerning the relationships of movie-title and
movie-producer and make-movie.

Functions both consume and produce structures. Suppose we need to record an increase of sales
for one of our stars. This act should be recorded in the star's record. To do-so, we should have a
function that consumes a star structure and produces a star structure wi ﬁthe same information
except for the sales component. Let's assume for now that the functiéhéd\ s 20000 to the star's
sales. ' A\

First, we write down a basic description of the function, usi gou Qntféct, header, and purpose
format:

;; 1ncrement-sales
;; to produce a star recor
(define (increment-sa

paf*with 20000 more sales

Here is an example efhow the function should process star structures:

(increment—saleé\
should produce
(make-star 'Abba 'John 'vocals 32200))

”make—star 'Abba 'John 'vocals 12200))

The three sample star structures from above are also good examples of potential inputs.

;; dincrement-sales : star -> star
;; to produce a star record like a-star with 20000 more sales
(define (increment-sales a-star)
(make-star (star-last a-star)
(star-first a-star)
(star-instrument a-star)
(+ (star-sales a-star) 20000)))

Figure 9: The complete definition of increment-sales

The increment-sales function must construct a new star structure with make-star, but to do
s0, it must also extract the data in a-star. After all, almost all of the data in a-star is a part of

-66-

X -
FlyHeart.com

TEAM FLY PRESENTS



the star structure produced by increment-sales. This suggests that the definition of
increment-sales contains expressions that extract the four fields of a-star:

(define (increment-sales a-star)
(star-last a-star)
(star-first a-star)
(star-instrument a-star)
(star-sales a-star) ... )

As we have seen with the examples, the function adds 20000 to (star-sales a-star) and
assembles the four pieces of data into a star structure with make-star. Figure 9 contains the
complete definition.

Exercise 6.3.3. Provide a structure definition that represents an airforce's jet fighters. Assume
that a fighter has four essential properties: designation (' £22, 'tornado, Or 'mig22),
acceleration, top-speed, and range. Then develop the function within-range. The function
consumes a fighter record and the distance of a target from the (fighter's) base. It determines
whether the fighter can reach the intended target. Also develop the function reduce-range. The
function consumes a fighter record and produces one in which the range field is reduced to 80%
of the original value. q

6.4 Data Definitions

Consider the following expression:

(make-posn 'Albert 'Meyer)

(distance-to 'Meyer) )

(sgrt
(+ (sgr (posn-x (make-posn 'Albert 'Meyer)))
(sgqr (posn-y (make-posn 'Albert 'Meyer)))))

= (sqrt
(+ (sgr 'Albert)
(sgqr (posn-y (make-posn 'Albert 'Meyer)))))

= (sqrt
(+ (* "Albert 'Albert)
(sgr (posn-y (make-posn 'Albert 'Meyer)))))

That is, it requires us to multiply 'a1bert with itself. Similarly,

(make-star 'Albert 'Meyer 10000 'electric-organ)

does not produce a star structure according to our intentions. In particular, the structure is not
suitable for processing by increment-sales.

To avoid such problems and to assist with the development of functions, we must add a data
definition to each structure definition.
-67-

X -
FlyHeart.com

TEAM FLY PRESENTS



A paTaA DEFINITION states, in a mixture of English and Scheme, how we intend to use a class of
structures and how we construct elements of this class of data. For example, here is a data
definition for posn structures:

A posn is a structure:

(make-posn x vy)
where x and y are numbers.

It says that a valid posn structure always contains two numbers, and nothing else. Hence, when
we use make-posn to create a posn structure, we must apply it to two numbers; when a function
contains selector expressions for posn structures, we may now assume that their result is a
number.

The data definition for star structures is only slightly more complicated:

A star is a structure:

(make-star last first instrument sales) “

where last, first, and instrument are symbols and sales is a numbcr.\ J

Thls data deﬁnltlon says that valid star structures contam symbols in the ﬁelds for 1ast name,

ﬁh‘«- aﬁ]lw'hx;t”n{ all Sekeemnes dats
Flgure 10: The meaning of data definitions

In general, a data definition identifies a subclass of Scheme's universe of values: see figure 10.
As we have seen so far, Scheme's universe contains numbers, symbols, images, strings, chars,
booleans, and many different classes of structures. Our functions, however, are intended to work
only for a subclass of values. For example, area-of-disk consumes only numbers; reply from
section 5 consumes only symbols. A few subclasses, such as number, already have names,
because they are useful for all kinds of programming tasks. Others are only interesting in the
context of a specific problem. For those cases, a programmer should introduce a data definition.

The most important role of a data definition is that of a covenant between programmers and users.
We expect both groups to respect such data definitions, and we expect the programmer to exploit
it for the function construction. For example, when the programmer of distance-to-0 specifies
that all posns contain two numbers, a user must always apply distance-to-0 to a posn

structure with two numbers. Furthermore, as we will discuss over the next few sections, we
expect a programmer to exploit data definitions for function developments. Naturally, a data
definition in English and Scheme does not prevent us from abusing make-posn. It is, however, a

-68-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



written statement of intent, and a person who willingly violates or ignores this covenant must
face the consequences of ill-behaving computations.*

Exercise 6.4.1. Provide data definitions for the following structure definitions:

define-struct movie (title producer))
define-struct boyfriend (name hair eyes phone))

define-struct CD (artist title price))

Nhwb =

(

(

(define-struct cheerleader (name number))

(

(define-struct sweater (material size producer))
Make appropriate assumptions about what data goes with which field.

Exercise 6.4.2. Provide a structure definition and a data definition for representing points in
time since midnight. A point in time consists of three numbers: hours, minutes, and seconds.

Exercise 6.4.3. Provide a structure definition and a data definition for representing three-letter
words. A word consists of letters, which we represent with the symbols 'a through ' z.

Pl
1
[

6.5 Designing Functions for Compound Data_ f

Sections 6.1 through 6.4 suggest that the design of function
regular manner. First, a programmer must recognlze t
simple rule of using structures whenever the descrlptlon ome obJect specifies several pieces
of information. If we don't use structures in th € cases, we quickly lose track of which data
belongs to which object, especially when we write 1arge functions that process massive amounts
of data. \

s fo \“compound data proceeds in a
ctures are needed. We follow the

Second, a programmer can us > th sti‘ucture and data definitions for the organization of a
function. We use the term templ te/when we design functions. As we will see in this and many
future sections, the template matches the data definition, and the template is the essential step in
the careful design of functions.

To emphasize this point, we modify our function design recipe from section 2.5 to accommodate
compound data. Most importantly, working with compound data requires adjustments in a few of
the basic design steps and two new steps: data analysis and template design:

;; Data Analysis & Definitions:

(define-struct student (last first teacher))

;; A student is a structure: (make-student 1 f t) where £, 1, and t are
symbols.

;; Contract: subst-teacher : student symbol -> student

;7 Purpose: to create a student structure with a new
;; teacher name if the teacher's name matches 'Fritz

;; Examples:
(subst-teacher (make-student 'Find 'Matthew 'Fritz) 'Elise)
(make-student 'Find 'Matthew 'Elise)

rr

-69-

X -
FlyHeart.com

TEAM FLY PRESENTS



-70-

rr

(subst-teacher (make-student 'Find 'Matthew 'Amanda) 'Elise)
(make-student 'Find 'Matthew 'Amanda)

Template:

(define (process-student a-student a-teacher)
(student-last a-student)
(student-first a-student)
(student-teacher a-student) ...)

Definition:
(define (subst-teacher a-student a-teacher)
(cond
[ (symbol=? (student-teacher a-student) 'Fritz)

rr

(make-student (student-last a-student)
(student-first a-student)
a-teacher) |
[else a-student]))

Tests:

(subst-teacher (make-student 'Find 'Matthew 'Fritz) 'Elise)

rr

expected value:

(make-student 'Find 'Matthew 'Elise) d

(subst-teacher (make-student 'Find 'Matthew 'Aman&éiifﬁiise)

7

(make-student 'Find 'Matthew 'Amanda)

expected value:

Figure 11: The design recipe for compound data: A mplete example

Data Analysis and Design: Before\we an\ﬂevelop a function, we must understand how
to represent the 1nf0rmat10n in ot leer\n statement within our chosen programming
language. To do so, W search the problem statement for descriptions of (relevant)
objects and th : demgn data representatlon based on the results of our analysis.

use Scheme's classes of atomic data (numbers, symbols, images, etc.)
to represent information. But they are not enough. If we discover that an object has N
properties, we introduce a structure definition with N fields and supply a data definition
that specifies what kind of data the fields may contain.

Let us consider functions that process student records at a school. If a student's interesting
properties for a school are

1. the first name,
2. the last name, and
3. the name of the home-room teacher,

then we should represent information about a student as a structure:

(define-struct student (last first teacher))

Here is the data definition that specifies the class of student structures as precisely as
possible:

X -
FlyHeart.com

TEAM FLY PRESENTS



-71-

A student 1s a structure:
(make-student 1 f t)
where 1, £, and t are symbols.

The corresponding data class contains structures like these:

(make-student 'findler 'kathi 'matthias)
(make-student 'fisler 'sean 'matthias)
(make-student 'flatt 'shriram 'matthias)

Contract: For the formulation of contracts, we can use the names of the atomic classes
of data, such as number and symbol, and those names that we introduced in data
definitions, such as student.

Template: A function that consumes compound data is likely to compute its result from
the components of its input. To remind ourselves of the components, we first design a
template. For compound data, a TempLATE consists of a header and a body that lists all
possible selector expressions. Each selector expression is the application of an
appropriate selector primitive to a parameter that stands for a struoture

Then a-student isa parameter that stands for a structure and a-teacher stands for just
a symbol. The template therefore has the following shape:

;; process-student : student symbol -> 27?7
(define (process-student a-student a-teacher)
(student-last a-student)
(student-first a-student)
(student-teacher a-student) ...)

The 222 output reminds us that we don't assume anything about the output of the function.
We design every function that consumes a student structure using this template.

Examples: Let us study two examples of functions that consume student structures.
The first function, check, is supposed to return the last name of the student if the
teacher's name is equal to a-teacher and 'none otherwise:

° (check (make-student 'Wilson 'Fritz 'Harper) 'Harper)

o ;; expected value:

o 'Wilson

[ ]

° (check (make-student 'Wilson 'Fritz 'Lee) 'Harper)
.~

FlyHeart.com

TEAM FLY PRESENTS



° ;5 expected value
° 'none

The second function, transfer, is supposed to produce a student structure that contains
the same information as a-student except for the teacher field, which should be a-
teacher:

(transfer (make-student 'Wilson 'Fritz 'Harper) 'Lee)
;5 expected value:
(make-student 'Wilson 'Fritz 'Lee)

(transfer (make-student 'Woops 'Helen 'Flatt) 'Fisler)
;7 expected value:
(make-student 'Woops 'Helen 'Fisler)

Body: The template provides as many clues for the definition of the function as the
examples. As before, the goal of this step is to formulate an expression that computes the
answer from the available data using other functions or Scheme's primitive. The template
reminds us that the available data are the parameters and the data computed by the
selector expressions. To determine what the selectors produce, we read the data definition
for the structure. , | |

Let us return to our first example, check:

(define (check a-student a-teache
(cond \
[ (symbol=? (student- teaaher
(student-last a- studen y&
[else 'nonel))

student) a-teacher)

This particular functi St three selector expressions from the template.
Specifically, it con pa th result of the selector expression (student-teacher a-

student) with a teac and; if they are equal, produces the result of (student-last
a-student). Just namlng he results of the selector expressions and reading the problem

statement makes the definition obvious.

Similarly, the transfer function is easy to define using the template and the examples:

(define (transfer a-student a-teacher)
(make-student (student-last a-student)
(student-first a-student)
a-teacher))

This second function uses the same two selector expressions as the first example, but in a
different way. The key observation, however, is that the template reminds us of all the
information that we have available. When we define the function, we must use and
combine the available information.

Figure 12 presents the recipe for compound data in tabular form. In practice, though, a function
contains many functions that all work on the same class of input data. It is therefore normal to
reuse the template many times, which means that examples are often constructed after the
template is set up. Compare it with the design recipes in figures 4 and 6.

X -
FlyHeart.com

TEAM FLY PRESENTS



Phase Goal Activity
Data to formulate a data |determine how many pieces of data describe the
Analysis definition “interesting" aspects of the objects mentioned in the
and Design problem statement .add a structure definition and a data
definition (for each class of problem object)
Contract to name the name the function, the classes of input data, the class of
Purpose and function; output data, and specify its purpose:
Header to specify its ;s name :inl in2 .. .--> out
classes of ;; to compute . .. fromx/ ...
input data and its | (define (name xI x2 ...) ...)
class of output
data;
to describe its
purpose;
to formulate a
header
Examples to characterize the |search the problem statement for examples swork
input- through the examples -Valldate the\results if possible »
output relationship \make up examples |
via examples O\
Template to formulate an for those parameters that stand for compound values,
outline ith selector €
Body to define the develop a Sbheme expression that uses Scheme's
function p‘ 'mHWe ‘operations, other functions, selector
- expressmns and the variables
Test to disébver \ [ pply the function to the inputs of the examples scheck
mlstakes that the outputs are as predicted
" typos and
logic)

Exercise 6.5.1.

I. (define-
2. (define-
3. (define-
4, (define-
5. (define-

Figure 12: Designing a function for compound data

(Refines

the recipe in figure 4 (pg. 5))

Develop templates for functions that consume the following structures:

struct movie

struct boyfriend
struct
CD

sweater

struct
struct

cheerleader

(title producer))

(name hair eyes phone))
(name number) )

(artist title price))

(material size producer)) .

Exercise 6.5.2. Develop the function time->seconds, which consumes a time structure (see
exercise 6.4.2) and produces the number of seconds since midnight that the time structure

represents.
-73-

.~

FlyHeart.com

TEAM FLY PRESENTS




Example:

(time->seconds (make-time 12 30 2))
;7 expected value:
45002

Explain the example.

6.6 Extended Exercise: Moving Circles and Rectangles

Implementing a computer game often requires moving a picture across a computer monitor. In
figure 13, for example, a simplistic face is moved from the left part of the canvas toward the
right border. For simplicity, our pictures consist of many colored circles and rectangles. From
section 6.2, we already know, for example, how to draw and erase a circle. Here we learn to
translate a circle, that is, to move its representation along some line. In sections 7.4, 10.3,

and 21.4 we learn to move entire pictures with compact programs.*

€y -

€y -

Figure 13: A moving face

Following the design recipe, we start with structure and data definitions, then move on to
templates, and finally write the necessary functions. The first sequence of exercises covers
circles; the second one is about rectangles.

A First Note on Iterative Refinement: This method of developing large programs is our first
taste of ireraTIVE REFINEMENT. The basic idea behind iterative refinement is to start with a simple
version of the program, that is, a version that deals with the most important part of the problem.
In this section, we start with functions that move the most basic shapes: circles and rectangles.
Then we refine the program to deal with more and more complex situations. For example, in
section 10.3 we learn to deal with pictures that consist of an arbitrary number of circles and
rectangles. Once we have a complete program, we edit it so that others can easily read and
modify it, too. Section 21.4 covers this aspect of the example.

74-

?IyHeam_‘D
TEAM FLY PRESENTS



Refining a program in this manner is the most prevalent method of designing complex programs.
Of course, we must know the eventual goal for this method to succeed, and we must always keep
it in mind. It is therefore a good idea to write down an action plan, and to reconsider the plan
after each refinement step. We will discuss this process again in section 16.

Exercise 6.6.1. Provide a structure definition and a data definition for representing colored
circles. A circle is characterized by three pieces of information: its center, its radius, and the
color of its perimeter. The first is a posn structure, the second a number, and the third a (color)
symbol.

Develop the template fun-for-circle, which outlines a function that consumes circles. Its
result is undetermined.

Exercise 6.6.2. Use fun-for-circle to develop draw-a-circle. The function consumes a
circle structure and draws the corresponding circle on the screen. Use (start 300 300) to
create the canvas before testing the function.

Exercise 6.6.3. Use the template fun-for-circle to develop in-circle?. The function
consumes a circle structure and a posn and determines whether or not the pixel is inside the
circle. All pixels whose distance to the center is less or equal to the radlus‘ are inside the circle;

the others are outside.

Consider the circle in figure 14. The circle's center is
pixel labeled &, located at (make-posn 6 1.5),1s 1n51de
at (make-posn 8 6), 1s outside.

Exercise 6.6.4. Use the template fun+for-circle to develop translate-circle. The
function consumes a circleﬂstrliéfme and-ani mﬁer delta. The result is a circle whose center
is delta pixels to the righ f e intiut.iThe function has no effect on the canvas.

Geometric Translation: oviﬁg “geometric shape along a straight line is referred to as a

translation.

Exercise 6.6.5. Use the template fun-for-circle to develop clear-a-circle. The function
consumes a circle structure and clears the corresponding circle on the canvas.

Exercise 6.6.6. Define the function draw-and-clear-circle, which draws a circle structure,
waits for a short time, and clears it. To implement a waiting period, the teachpack draw. ss
provides the function sleep-for-a-while. It consumes a number and puts the program to sleep
for that many seconds; its result is true. For example, (sleep-for-a-while 1) waits for one
second.

The following function is the key ingredient for moving a circle across a canvas, one step at a
time:

;; move-circle : number circle -> circle
;; to draw and clear a circle, translate it by delta pixels
(define (move-circle delta a-circle)
(cond
[ (draw—-and-clear-circle a-circle) (translate-circle a-circle delta)]
[else a-circle]))

-75-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



It draws and clears the circle on the canvas and then produces the new circle structure so that
another draw-and-clear effect displays the circle at a new position:

(start 200 100)

(draw—-a-circle
(move-circle 10
(move-circle 10
(move-circle 10
(move-circle 10 ... a circle ...)))))

This expression moves the circle four times, by 10 pixels each, and also shows this movement on
the canvas. The last draw-a-circle is necessary because we wouldn't otherwise see the last
move on the screen.

f
5 10

1 (6,1.5]
| RN

witlth

1 heght  .C @)

Circles, rectangles, and pixels

Exercise 6.6.7. Provide a structure definition and a data definition for representing colored
rectangles. A rectangle is characterized by four pieces of information: its upper-left corner, its
width, its height, and its fill color. The first is a posn structure, the second and third quantities
are plain numbers, and the last one is a color.

Develop the template fun-for-rect, which outlines a function that consumes rectangles. Its
result is undetermined.

Exercise 6.6.8. Use the template fun-for-rect to develop draw-a-rectangle. The function
consumes a rectangle structure and draws the corresponding rectangle on the screen. In
contrast to circles, the entire rectangle is painted in the matching color. Remember to use (start
300 300) to create the canvas before testing the function.

Exercise 6.6.9. Use the template fun-for-rect to develop in-rectangle?. The function
consumes a rectangle structure and a posn and determines whether or not the pixel is inside the
rectangle. A pixel is within a rectangle if its horizontal and vertical distances to the upper-left
corner are positive and smaller than the width and height of the rectangle, respectively.

-76-

X -
FlyHeart.com

TEAM FLY PRESENTS



Consider the rectangle in figure 14. This rectangle's key parameters are (make-posn 2 3), 3,
and 2. The pixel labeled c is inside of the rectangle, B is outside.

Exercise 6.6.10. Use the template fun-for-rect to develop translate-rectangle. The
function consumes a rectangle structure and a number delta. The result is a rectangle whose
upper-left corner is de1ta pixels to the right of the input. The function has no effect on the
canvas.

Exercise 6.6.11. Use the template fun-for-rect to develop clear-a-rectangle. It consumes
a rectangle structure and clears the corresponding rectangle on the canvas.

Exercise 6.6.12. Here is the move-rectangle function:

;; move-rectangle : number rectangle -> rectangle
;; to draw and clear a rectangle, translate it by delta pixels
(define (move-rectangle delta a-rectangle)
(cond
[ (draw—-and-clear-rectangle a-rectangle)
(translate-rectangle a-rectangle delta) ]
[else a-rectangle])) H

\ \
It draws and clears a rectangle circle on the canvas and then produces a translated version.

0+ Dx| e - 0+ x:

Figure 15: Three stages of the hangman picture
-77-

X -
FlyHeart.com

TEAM FLY PRESENTS




Hangman is a two-player, word-guessing game. One player thinks of a three-letter> word and
draws the noose of a gallows (see figure 15); the other player tries to guess the word, one letter at
a time. For every wrong guess, the first player adds another part to the drawing (see figure 15):
first the head, then the body, the arms, and the legs. If, however, a guess agrees with one or two
letters in the chosen word, the first player reveals the position(s) where this letter occurs. The
game is over when the second player guesses the complete word or when the first player has
completed the stick figure.

Let's design a program that plays the role of the first player. The program consists of two parts:
one for drawing the figure, and another for determining whether a guess occurs in the chosen
word and where.

Exercise 6.7.1. Develop the function draw-next-part, which draws the pieces of a hangman
figure. The function consumes one of the seven symbols:

'right-leg 'left-leg 'left-arm 'right-arm 'body  ‘“head 'noose

It always returns t rue and draws the matching part of the figure. See ﬁgute 15 for three
snapshots of intermediate stages.” ) ~

Hints: Add (start 200 200) to the top of the definiti
develop one component at a time. If a component of ‘the
drawing operation, combine the operations using an a
expressions and ensure that both results are £y

wmdow Start w1th the noose and
ick figure requires more than one
;pressmn which evaluates the two

The second task of the first player is to\}de ‘whether a guess is among the letters of the
chosen word and, if so, where:it occurs. Our recipe requires that, before we design a function for
this task, we need to yanalyz ~ a and provide data definitions. The key objects of the game
are words and letters. A word consis ‘of three letters. A letter is represented with the symbols 'a
through ' z. Using just those. letters however, is not enough because the program also needs to
maintain a word that records how much the second player has guessed. The solution is to add one
extra "'letter" to our alphabet that is distinct from the others; the hangman teachpack uses ' for
this purpose.

Exercise 6.7.2. Provide a structure definition and a data definition for representing three-letter
words.

Exercise 6.7.3. Develop the function reveal. It consumes three arguments:

1. the chosen word, which is the word that we have to guess;
2. the status word, which shows which portion of the word has been revealed so far; and
3. aletter, which is our current guess.

The function produces a new status word, that is, a word that contains ordinary letters and ' .
The fields in the new status word are determined by comparing the guess with each pair of letters
from the status word and the chosen word:

-78-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



1. If the guess is equal to the letter in the chosen word, the guess is the corresponding letter
in the new status word.
2. Otherwise, the new letter is the corresponding letter from the status word.

Test the function with the following examples:

(reveal (make-word 't 'e 'a) (make-word ' 'e ' ) 'u)
;7 expected value

(make-word ' 'e ' )

(reveal (make-word 'a 'l 'e) (make-word 'a ' ') e)
;7 expected value:

(make-word 'a ' 'e)

(reveal (make-word 'a 'l 'l) (make-word ' ' ' ) 'l)
;; expected value
(make-word ' 'l '1l)

The first one shows what happens when the guess does not occur in the word; the second one
shows what happens when it does occur; and the last one shows what happens when it occurs
twice. % "

. ‘ |
Hints: (1) Remember to develop auxiliary functions when a deﬁmtlon beCOmes too large or too

complex to manage.

(2) The function reveal consumes two structures a ,lue (a letter). This suggests

For the template, it is best to write

“draw-next-part)

(hangman maké¥wo¥

The hangman function chooses a three-letter word randomly and displays a window with a pop-
up menu for letters. Choose letters and, when ready, click the check button to see whether the
guess is correct. Comment out the test cases for exercise 6.7.1 so that their drawing effects don't
interfere with those of hangman.

 An alternative terminology is "'to access the fields of a record." We prefer to think of structure
values as containers from which we can extract other values.

¥ For more documentation, see DrScheme's Help Desk.

* DrScheme provides an optional tool that permits programmers to check whether users and
programmers respect the data definition for a particular structure. To do so, a programmer must
state data definitions in a special language. Although checking the adherence to data definitions
is important for large programs, an introductory course can avoid this topic.

L This series of sections was inspired by Ms. Karen Buras and her son.

-79-

X -
FlyHeart.com

TEAM FLY PRESENTS



# In reality, we would want to play the game with words of arbitrary length, but a game based on
three-letter words is easier to implement for now. We return to the problem in exercise 17.6.2.

= Thanks to Mr. John Clements for the artistic version of draw-next-part.

-80-
= _—>
FlyHeart.com

TEAM FLY PRESENTS



Section 7

The Varieties of Data

The previous section significantly expands our world of data. We must now deal with a universe
that contains booleans, symbols, and structures of many kinds. Let's bring some order to this
world.

Up to this point, our functions have always processed subclasses of four different kinds of data:**

e numbers: representations of numeric information;

e booleans: truth and falsity;

e symbols: representations of symbolic information; and

e structures: representations of compounds of information.

On occasion, however, a function must process a class of data that 1nclud¢s both numbers and
structures or structures of several different kinds. We learn to design such functions in this
section. In addition, we learn how to protect functions from bad uses. Here. a bad use means that
some user can accidentally apply a function for drawin circles oa rectangle Although we have
agreed that such users violate our data definitions, we should neverth less know how to protect
our functions against such uses, when necessary.

7.1 Mixing and Dlstlnguishln :Data "

In the preceding section, we poksn structures with exactly two components to represent
pixels. If many of the pixe the X ‘axis, we can simplify the representation by using plain
numbers for those plxels a“‘ d posn structures for the remaining ones.

Figure 16 contains a sample collection of such points. Three of the five points, namely, C, D, and
E, are on the x axis. Only two points require two coordinates for an accurate description: 4 and B.
Our new idea for representing points permits us to describe this class of points succinctly:
(make-posn 6 6) for a; (make-posn 1 2) forB;and 1, 2, and 3 for c, b, and E, respectively.

If we now wish to define the function distance-to-0, which consumes such point
representations and produces their distance to the origin, we are confronted with a problem. The
function may be applied to a number or a posn. Depending on the class to which the input
belongs, distance-to-0 must employ a different method to calculate the distance to the origin.
Thus we need to use a cond-expression to distinguish the two cases. Unfortunately, we don't
have any operations to formulate the appropriate conditions.

-81-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



-§ &
+ &
o+

u3]

Ve

Figure 16: A small collection of points

To accommodate this kind of function, Scheme provides prEDICATES, Wth are operations that
recognize a particular form of data. The predicates for the classes of data We know are:

e  number?, which consumes an arbitrary value and produces t rue if the value is a number
and false otherwise;

e  Dboolean?, which consumes an arbltrary Val
boolean value and false otherwwe ‘

e symbol?, which consumes an| arb' ary a Ue and produces true if the value is a symbol
and false otherw1se >

o struct?, which co

structure and

and produces t rue if the value is a

mes/an arbltrary alue and produces true if the value is a

For each structure definition, Scheme also introduces a separate predicate so that we can
distinguish between distinct classes of structures. Suppose the Definitions window contains
the following structure definitions:*

(define-struct posn (x y))
(define-struct star (last first dob ssn))

(define-struct airplane (kind max-speed max-load price))
Then, Scheme also knows the following three predicates:

e  posn?, which consumes an arbitrary value and produces true if the value is a posn
structure and false otherwise;

e  star?, which consumes an arbitrary value and produces true if the value is a star
structure and false otherwise;

e airplane?, which consumes an arbitrary value and produces t rue if the value is a
airplane structure and false otherwise.

-82-

X -
FlyHeart.com

TEAM FLY PRESENTS



Hence a function can distinguish a structure from a number as well as a posn structure from an
airplane structure.

Exercise 7.1.1. Evaluate the following expressions by hand:

(number? (make-posn 2 3))
(number? (+ 12 10))
(posn? 23)

(posn? (make-posn 23 3))
(

NhAwLDD -

star? (make-posn 23 3))

Check the answers in DrScheme.

Now we can develop distance-to-0. Let's start with a data definition:
A pixel-2 is either

1. anumber, or
2. aposn structure.

Stating the contract, purpose, and header is straightforward:

;; distance-to-0 : pixel-2 -> number
;; to compute the distance of a—pixelﬁﬁo
(define (distance-to-0 a-pixel) ...) ||

(define
(cond -
[(number° a—plxel) o

[ (posn? a- plxel ... 1))

(distance

The two conditions match the two possible inputs of the new distance-to-0 function. If the
first one holds, the input is a pixel on the x axis. Otherwise the pixel is a posn structure. For the
second cond-line, we also know that the input contains two items: the x and y coordinates. To
remind ourselves, we annotate the template with two selector expressions:

(define (distance-to-0 a-pixel)
(cond
[ (number? a-pixel) ...]
[ (posn? a-pixel) ... (posn-x a-pixel) ... (posn-y a-pixel) ... 1))

Completing the function is easy. If the input is a number, it is the distance to the origin. If it is a
structure, we use the old formula for determining the distance to the origin:

(define (distance-to-0 a-pixel)

(cond
[ (number? a-pixel) a-pixel]
[ (posn? a-pixel) (sqgrt

(+ (sgr (posn-x a-pixel))
(sqr (posn-y a-pixel))))]))
-83-

X -
FlyHeart.com

TEAM FLY PRESENTS



Let us consider a second example. Suppose we are to write functions that deal with geometric
shapes. One function might have to compute the area covered by a shape, another one the
perimeter, and a third could draw the shape. For the sake of simplicity, let's assume that the class
of shapes includes only squares and circles and that their description includes their location (a
posn) and their size (a number).

Information about both shapes must be represented with structures, because both have several
attributes. Here are the structure definitions:

(define-struct square (nw length))
(define-struct circle (center radius))

and the matching data definition:
A shape is either

1. a circle structure:
2. (make-circle p s)

where p 1S a posn and s is a number; or

3. asquare structure:
4. (make-square p ¢

where p is a posn and

Together, the two classesim‘ ke up the class of shapes:

The next step of our design recipe requires that we make up examples. Let's start with input
examples:

1. (make-square (make-posn 20 20) 3),
2. (make-square (make-posn 2 20) 3),and
3.

(make-circle (make-posn 10 99) 1).

To make up examples of input-output relationships, we need to know the purpose of the function.
So suppose we need the function perimeter, which computes the perimeter of a shape. From
geometry, we know that the perimeter of a square is four times its side, and the perimeter of a
circle is »times the diameter, which is twice the radius.*® Thus, the perimeter of the above three
examples are: 12, 12, and (roughly) 6. 28, respectively.

Following the design recipe and the precedent of distance-to-0, we start with the following
skeleton of the function:

;; perimeter : shape -> number

-84-

X -
FlyHeart.com

TEAM FLY PRESENTS



;; to compute the perimeter of a-shape
(define (perimeter a-shape)
(cond
[ (square? a-shape) ... ]
[ (circle? a-shape) ... 1))

because the function must first determine to which class a-shape belongs.

Furthermore, each possible input is a structure, so we can also add two selector expressions to
each cond-clause:

;7 perimeter : shape -> number
;; to compute the perimeter of a-shape
(define (perimeter a-shape)

(cond
[ (square? a-shape)
(square-nw a-shape) ... (square-length a-shape) ...]
[ (circle? a-shape)
(circle-center a-shape) ... (circle-radius a-shape) ...1))

The selector expressions remind us of the available data.

Pl
1
| \

Now we are ready to finish the definition. We fill the gaps in the two- anS\)vers by translating the
mathematical formulae into Scheme notation: \

(define (perimeter a-shape)

(cond
[ (square? a-shape) (* (square\len
[ (circle? a-shape) (*

Since the position of a shape does not a;
nw and center disappear. . <

Exercise 7.1.2. Test perimet vith the examples.
Exercise 7.1.3. Develop the function area, which consumes either a circle or a square and

computes the area. Is it possible to reuse the template for perimeter by changing the name to
l’)
areal!

7.2 Designing Functions for Mixed Data

The function development in the preceding section suggests some amendments to our design
recipe. Specifically, the data analysis step, the template construction step, and the definition of
the function's body require adjustments.

o Data Analysis and Design: When we analyze a problem statement, our first task is to
determine whether it mentions distinct classes of data -- which we call mixep pata and
which is also known as the union of data classes. In other words, the data analysis must
take into account several aspects now. First, we must determine how many distinct
classes of objects are mentioned in the problem and what their important attributes are. If
there are several different classes of objects, we are mixing data. Second, we must
understand whether the various objects have several properties. If an object has several

-85-

X -
FlyHeart.com

TEAM FLY PRESENTS



-86-

attributes, we use compound data for its representation. As a result, the resulting data
definition may have several clauses that enumerate several possibilities. Indeed, we will
see that the data analysis may yield a hierarchy of data definitions.

The example of the preceding section deals with two distinct kinds of shapes, each of
which has several properties. We captured this idea with the following data definition:

A shape is either

1. a circle structure:
2. (make-circle p s)

where p 1S a posn and s is a number; or

3. asquare structure:
4. (make-square p s)

where p is a posn and s is a number.

1n1t10n That is, if x stands for a piece of data in
tbe able to use built-in and user-defined predlcates to

distinguish the’ én merat
conditions would b

Template: Recall that the template is a translation of the input data definition into
Scheme. Thus, imagine that we have a data definition that enumerates several distinct
possibilities. The first step is to write down a cond-expression with as many clauses as
there are enumerated possibilities in the data definition. The second step is to add a
condition to each line. Each condition should hold if the input belongs to the
corresponding subclass of data mentioned in the data definition.

Here is the template for our running example:

;7 £ : shape -> 2?72
(define (f a-shape)
(cond
[ (square? a-shape) ...]
[ (circle? a-shape) ...]1))

The output specification and the purpose statement are missing to emphasize that a
template has no connection to the output or the purpose of a function.

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Figure 18 summarizes the des1g eclpe with : all steps ‘included.

-87-

Once we have formulated the template for the conditional, we refine the template further,
cond-line by cond-line. If the purpose of a line is to process atomic information, we are
done. If a line processes compound data, we enrich the template with appropriate selector
expressions.

Let's illustrate the idea with our running example again:

(define (f a-shape)

(cond
[ (square? a-shape)
(square-nw a-shape) ... (square-length a-shape) ...]
[ (circle? a-shape)
(circle-center a-shape) ... (circle-radius a-shape) ...1))

Body: Using the conditional template, we split the task into simpler tasks. Specifically,
we can focus on each cond-line separately, simply considering the question what is the
output if we are given this kind of input. All other cases are ignored as we work out one
particular clause.

Suppose we want to define a function that computes the perlmeter ﬂf a shape. Then we
start from the template and fill in the gaps: \

;; perimeter : shape -> number

;; to compute the perimeter of a- sha'e

(define (perimeter a-shape)
(cond

[ (square? a-shape) (*

[ (circle? a-shape) (*‘

ength a-shape) 4) ]
r le radius a-shape))

(§qua\
( pi)l))

;; Data Definitivn:

(define-struct circle (center radius))
(define-struct square (nw length))

;; A shape is either

;; 1. a structure: (make-circle p s)
8 5 where p is a posn, s a number;
;7 2. a structure: (make-square p s)
88 where p is a posn, s a number.

;7 Contract, Purpose, Header:
;; perimeter : shape -> number
;; to compute the perimeter of a-shape

;; Examples: see tests

;; Template:
;; (define (f a-shape)

- (cond
28 [ (square? a-shape)
88 ... (sguare-nw a-shape) ... (square-length a-shape) ...]
] [ (circle? a-shape)
= =

FlyHeart.com

TEAM FLY PRESENTS



88 ... (circle-center a-shape)

;; Definition:
(define (perimeter a-shape)
(cond

[ (circle? a-shape)

(* (* 2 (circle-radius a-shape)) pi)]
[ (square? a-shape)
(*

(square-length a-shape) 4)]))
;; Tests: (same as examples)
(= (perimeter (make-square ... 3)) 12)
(= (perimeter (make-circle ... 1)) (* 2 pi))

(circle-radius a-shape) ...1]))

Figure 17: The design recipe for mixed data: A complete example

Phase Goal Activity
Data to formulate a data |determine how many distinct classes of *"objects" make
Analysis definition up the classes of problem data senumerate the
and Design alternatives in a data definition »formulate a data
definition for each altematlve 1f it t$ a form of
compound data 0 |
Contract to name the name the function, the Qlasses of 1nput data, the class of
Purpose and function; output data and- peafy 1ts purp@se )
Header to specify its [ in.
classes of
input data and its
class of output
data;
to descrlbe Its
purpose
to formulate a
header
Examples to characterlze the |create examples of the input-output relationship smake
input- sure there is at least one example per subclass
output relationship
via examples
Template to formulate an introduce a cond-expression with one clause per
outline subclass sformulate a condition for each case, using
built-in and predefined predicates
Body to define the develop a Scheme expression for each cond-line (an
function answer), assuming that the condition holds
Test to discover apply the function to the inputs of the examples »check
mistakes that the outputs are as predicted
(""typos" and
logic)
Figure 18: Designing a function for mixed data
-88-

.~

FlyHeart.com

TEAM FLY PRESENTS




(Refines the recipes in figures 4 (pg. 5) and 12 (pg. 9))

Even a cursory comparative reading of the design recipes in sections 2.5, 4.4, 6.5, and the
current one suggests that the data analysis and the template design steps are becoming more and
more important. If we do not understand what kind of data a function consumes, we cannot
design it and organize it properly. If, however, we do understand the structure of the data
definition and organize our template properly, it is easy to modify or to extend a function. For
example, if we add new information to the representation of a circle, then only those cond-
clauses related to circles may require changes. Similarly, if we add a new kind of shape to our
data definition, say, rectangles, we must add new cond-clauses to our functions.

Exercise 7.2.1. Develop structure and data definitions for a collection of zoo animals. The
collection includes

o spiders, whose relevant attributes are the number of remaining legs (we assume that
spiders can lose legs in accidents) and the space they need in case of transport;

o elephants, whose only attributes are the space they need in case of transport;

 monkeys, whose attributes are intelligence and space needed for transportation.

Then develop a template for functions that consume zoo animals.

7.3 Composing Functions, Revisited

As we analyze a problem statement, we might wish to develop the data representation in stages.
This is especially true when the problem statement mentions several different kinds of objects. It
is easier to understand several smaller data definitions than one larger one.

Let's return to our shape problem again. Instead of the class of shapes in a single data definition,
we could start with two data definitions, one for each basic shape:

A circle is a structure:

(make-circle p s)
where p is a posn and s is a number.

A square is a structure:

(make-square p s)
where p is a posn and s is a number.
-89-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Once we have developed and understood the basic data definitions, possibly by playing with
examples and by writing simple functions, we can introduce data definitions that combine them.
For example, we can introduce a data definition for a class of shapes that refers to the two above:

A shape is either

1. acircle,or
2. a square.

Now suppose we need a function that consumes shapes. First, we form a cond-expression with
conditions for each part of the data definition:

;; £ : shape -> 2?72
(define (f a-shape)
(cond

[ (circle? a-shape) ...]
[ (square? a-shape) ...]))

Given our guideline concerning the composition of functions from section 3.1 and given that the
data definition refers to two other data definitions, the natural second step is to pass the argument
to auxiliary functions: o~ |

(define (f a-shape)

(cond
[ (circle? a-shape) (f-for-circle a
[ (square? a-shape) (f—for—square

This, in turn, requires that we develop the two

\Jhxﬁyluncﬁons,f—for—circleaand.f—for—
square, including their templates.. :

;; Data Definition: ;; Data Definitions:

(define-struct circle (center (define-struct circle (center
radius)) radius))
(define-struct squareP (nw ;; A circle is a structure:
lengthP))

Y (make-circle p s)

;7 A shape is either
;; where p is a posn, s a

;; 1. a structure: (make-circle p number;

s)

B 8 where p is a posn, s a

number; (define-struct squareP (nw
lengthP))

;7 2. a structure: (make-square p

S) ;; A square i1s a structure:

B 8 where p is a posn, s a g8 (make-square p s)

number.

;; where p is a posn, s a
number.

-90-

X -
FlyHeart.com

TEAM FLY PRESENTS



;; A shape is either

;; 1. a circle, or

;5 2. a square.

;; Final Definition: ;7 Final Definitions:

;; perimeter : shape -> number ;; perimeter : shape -> number
;7 to compute the perimeter of a- ;; to compute the perimeter of
shape a-shape
(define (perimeter a-shape) (define (perimeter a-shape)
(cond (cond
p
[ (circle? a-shape) [ (circle? a-shape)
<~ |
|
(* (* 2 (circle-radius a- §perimetér;bircle a-shape) ]
shape)) pi)] AN\ A

[ (square? a-shape) ) \ P

< (perimeter-square a-
%hé@@)]))

4)1)) \ ¥

;; perimeter-circle : circle ->
number

;7 to compute the perimeter of
a-circle

(define (perimeter-circle a-
circle)

(* (* 2 (circle-length a-
circle)) pi))

;; perimeter-square : square —>
number

;; to compute the perimeter of
a-square

(define (perimeter-square a-
square)

(* (square-length a-square)
4))

X -
FlyHeart.com

TEAM FLY PRESENTS



Figure 19: Two ways to define perimeter

If we follow this suggestion, we arrive at a collection of three functions, one per data definition.
The essential points of the program development are summarized in the right column of

figure 19. For a comparison, the left column contains the corresponding pieces of the original
program development. In each case, we have as many functions as there are data definitions.
Furthermore, the references between the functions in the right column directly match the
references among the corresponding data definitions. While this symmetry between data
definitions and functions may seem trivial now, it becomes more and more important as we study
more complex ways of defining data.

Exercise 7.3.1. Modify the two versions of perimeter so that they also process rectangles. For

our purposes, the description of a rectangle includes its upper-left corner, its width, and its
height.

7.4 Extended Exercise: Moving Shapes

In section 6.6, we developed functions for drawing, translating, and- clearmg circles and
rectangles. As we have just seen, we should think of the two classes of data as subclasses of a
class of shapes so that we can just draw, translate, and cle r'shaj cS. S

Exercise 7.4.1. Provide a data definition for a general ".”'/The class should at least

subsume the classes of colored circles and rectangle‘s“ or

_section 6.6 6.6.

Develop the template fun—for—shkape,‘lw\ h es functions that consume shapes.

Exercise 7.4.2. Use the te plateff' un- foyr shape to develop draw-shape. The function
consumes a shape and d raws it ont "

Exercise 7.4.3. Use the template fun-for-shape to develop translate-shape. The function
consumes a shape and a number delta, and produces a shape whose key position is moved by
delta pixels in the x direction.

Exercise 7.4.4. Use the template fun-for-shape to develop clear-shape. The function
consumes a shape, erases it from the canvas, and returns true.

Exercise 7.4.5. Develop the function draw-and-clear-shape. The function consumes a shape,
draws it, sleeps for a while, and clears it. If all the effects work out, it produces true.

Exercise 7.4.6. Develop move-shape, which moves a shape across the canvas. The function
consumes a number (delta) and a shape. The function should draw-and-clear the shape and return
a new shape that has been translated by delta pixels. Use this function several times to move a
shape across the canvas.

7.5 Input Errors

Recall our first function:
-9

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



;; area-of-disk : number -> number
;; to compute the area of a disk with radius r
(define (area-of-disk r)

(* 3.14 (* r r)))

Clearly, our friends may wish to use this function, especially for some of their geometry
homework. Unfortunately, when our friends use this function, they may accidentally apply it to a
symbol rather than a number. When that happens, the function stops with a whimsical and
uninformative error message:

> (area-of-disk 'my-disk)
*: expects type <number> as 1lst argument, given: 'my-disk;

Using predicates, we can do better.

To prevent this kind of accident, we should define checked versions of our functions, when we
wish to hand them to our friends. In general, a cueckep Function inputs an arbitrary Scheme value:
a number, a boolean, a symbol, or a structure. For all those values that are in the class of values
for which the original function is defined, the checked version applies the latter; for all others, it
signals an error. Concretely, checked-area-of-disk consumes an arbitrary Scheme value, uses
area-of-disk to compute the area of the a disk if the input is a number :Tind stops with an error
message otherwise. ~

Based on the enumeration of Scheme's classes of Values the template for a checked function is
as follows:

;; £ : Scheme-value -> 2?7
(define (f v)
(cond
[ (number? v)
[ (boolean? v)
[ (symbol?
[ (struct?

Each line corresponds to one possible class of input. If we need to distinguish between the
structures, we expand the last line appropriately.

The first clause is the only one where we can use area-of-disk. For the others, however, we
must signal an error. In Scheme we use the operation error to do so. It consumes a symbol and a
string. Here is an example:

(error 'checked-area-of-disk "number expected")

Hence the full definition of checked-area-of-disk is:

(define (checked-area-of-disk v)
(cond
[ (number? v) (area-of-disk v)]
[ (boolean? v) (error 'checked-area-of-disk "number expected") ]
[ (symbol? v) (error 'checked-area-of-disk "number expected") ]
[ (struct? v) (error 'checked-area-of-disk "number expected")]))

Using else we can greatly simplify the function:

-03-

X -
FlyHeart.com

TEAM FLY PRESENTS



;; checked-area-of-disk : Scheme-value -> number
;; to compute the area of a disk with radius v,
;; 1if v is a number
(define (checked-area-of-disk wv)
(cond
[ (number? v) (area-of-disk v)]
[else (error 'checked-area-of-disk "number expected")]))

Of course, such a simplification may not always be possible and may require a reordering of the
cond-clauses first.

Writing checked functions and simplifying them is important if we distribute the programs to
others. Designing programs that work properly, however, is far more important. The book
therefore focuses on the design process for the program proper and deemphasizes writing
checked versions.

Exercise 7.5.1. A checked version of area-of-disk can also enforce that the arguments to the
function are positive numbers, not just arbitrary numbers. Modify checked-area-of-disk in
this way.

Pl
1

Exercise 7.5.2. Develop checked versions of the functions prof i;y,“(‘ﬁgu“ré 5), is-between-5-62
(section 4.2), reply (section 5), distance-to-0 (section 6.1), and ia‘ef‘ime;;a (in the left

column of figure 19). ‘

Exercise 7.5.3. Take a look at these structure and{dqt{:

(define-struct vec (x y))
A speed-vector (vec) is a structure:

@ake—vec X Vy)

where both x and y are positive umb

Develop the function checked-make-vec, which should be understood as a checked version of
the primitive operation make-vec. It ensures that the arguments to make-vec are positive
numbers, and not just arbitrary numbers. In other words, checked-make-vec enforces our
informal data definition.

# We have also discussed images and strings, but we ignore these for now.

2 The posn structure is automatically provided in DrScheme's teaching languages and should
never be defined.

% The perimeter of a circle is also known as circumference.

-94-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 8

Intermezzo 1: Syntax and Semantics

Thus far we have approached Scheme as if it were a spoken language. Like toddlers, we learned
the vocabulary of the language, we acquired an intuitive understanding of its meaning, and we
figured out some basic rules of how to compose and not to compose sentences. Truly effective
communication, however, in any language -- be it natural like English or artificial like Scheme --
eventually requires a formal study of its vocabulary, its grammar, and the meaning of sentences.

A programming language is in many ways like a spoken language. It has a vocabulary and a
grammar. The vocabulary is the collection of those *“basic words" from which we can compose
““sentences" in our language. A sentence in a programming language is an expression or a
function; the language's grammar dictates how to form complete sentences from words.
Programmers use the terminology syntax to refer to the vocabularies and grammars of
programming languages.

Not all grammatical sentences are meamngful -- neither in English nor in a programmlng
language For example the English sentence "“the cat is round' s a meaningful sentence, but

““the brick is a car" makes no sense, even though itis Completely grammatlcal To determine
whether or not a sentence is meaningful, we must stul \MEANING or semanTics, of words and
sentences. For spoken languages, we typlcally Xplam the meaning of words with sentences that
use simpler words; in the case of a fore,i‘gn\l\an ge, we sometimes explain a word with simple
sentences in the foreign language or we tr: slat Words to a known language. For programming
languages, there are also sever al"w ys to explain the meaning of individual sentences. In this
book, we discuss the mea \ heme programs through an extension of the familiar laws of
arithmetic and algebra. After all, computation starts with this form of simple mathematics, and
we should understand the c:onnecti'byn between this mathematics and computing.

The first three sections present the vocabulary, grammar, and meaning of a small, but powerful
subset of Scheme. The fourth one resumes our discussion of run-time errors in Scheme, based on
our new understanding of its meaning. The remaining three sections revisit and and or
expressions, variable definitions, and structures.

8.2 The Scheme Vocabulary

Scheme's basic vocabulary consists of five categories of words. The five lines in figure 20 show
how computer scientists discuss the vocabulary of a language.*” All lines employ the same
notation. They enumerate some simple examples separated by a bar (** | "). Dots indicate that
there are more things of the same kind in some category.

<var>= x|area-of-disk |perimeter | ...

<Con> = trye | false

'a| ‘doll| ‘sum|

-05-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



1|-1]3/5]1.22] ...
<prm> = +|_|“_

Figure 20: Beginning Student Scheme: The core vocabulary

The first category is that of variables, which are the names of functions and values. The second
introduces constants: boolean, symbolic, and numeric constants. As indicated before, Scheme
has a powerful number system, which is best introduced gradually by examples. The final
category is that of primitive operations, which are those basic functions that Scheme provides
from the very beginning. While it is possible to specify this collection in its entirety, it is best
introduced in pieces, as the need arises.

For the classification of Scheme sentences, we also need three keywords: define, cond, and
else. These keywords have no meaning. Their role resembles that of punctuation marks,
especially that of commas and semicolons, in English writing; they help programmers
distinguish one sentence from another. No keyword may be used as a variable.

8.3 The Scheme Grammar |

In contrast to many other programming languages, Scheme has a simple grammar. It is shown in
its entirety in figure 21.%* The grammar defines two categories of sentences: Scheme definitions,
<def>, and expressions, <exp>. While the grammar does not dictate the use of white space
between the items of sentences, we follow the. aneﬁ on to put at least one blank space behind
each item unless an item is followed by;a\righ parenthesis **)". Scheme is flexible concerning
blank space, and we can replace ,s;ingl‘efb\f aé\eiby many spaces, line breaks, and page
breaks. ’

(<var> <var> ...<var>) <exp>)

| (<prm> <exp> .. .<exp>)
| (<var> <exp> ...<exp>)
| (cond (<exp> <exp>) . ..(<exp> <exp>))

| (cond (<exp> <exp>) ...(else <exp>))

Figure 21: Beginning Student Scheme: The core grammar

The two grammar definitions describe how to form atomic sentences and compound sentences,
which are sentences built from other sentences. For example, a function definition is formed by
using (", followed by the keyword define, followed by another "*(", followed by a non-empty
sequence of variables, followed by "*)", followed by an expression, and closed by a right
parenthesis "*)" that matches the very first one. The keyword define distinguishes definitions
from expressions.

-96-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



The category of expressions consists of six alternatives: variables, constants, primitive
applications, (function) applications, and two varieties of conditionals. The last four are again
composed of other expressions. The keyword cond distinguishes conditional expressions from
primitive and function applications.

Here are three examples of expressions: 'all, x, and (x x). The first one belongs to the class of
symbols and is therefore an expression. The second is a variable, and every variable is an
expression. Finally, the third is a function application, because x is a variable.

In contrast, the following parenthesized sentences are not expressions: (f define), (cond x),
and (). The first one partially matches the shape of a function application but it uses define as if
it were a variable. The second one fails to be a correct cond-expression because it contains a
variable as the second item and not a pair of expressions surrounded by parentheses. The last one
is just a pair of parentheses, but the grammar requires that every left parenthesis is followed by
something other than a right parenthesis.

Exercise 8.3.1. Why are the sentences
1.x2. (= y z) 3. (= (= y z) 0) ““

syntactically legal expressions?

Explain why the following sentences are illegal express

1. (3 + 4) 2. empty? (1) 3. (x)

. (define (£ x) x)- O y) 3. (define (f x y) 3)
syntactically legal definitio: s‘?
Explain why the following sentences are illegal definitions:

1. (define (f 'x) x) 2. (define (f x y z) (x)) 3. (define (f) 10)

Exercise 8.3.3. Distinguish syntactically legal from illegal sentences:

I. (x) 2. (+ 1 (not x)) 3. (+ 1 2 3)

Explain why the sentences are legal or illegal.

Exercise 8.3.4. Distinguish syntactically legal from illegal sentences:

1. (define (f x) 'x) 2. (define (f 'x) x) 3. (define (f x y) (+ 'y (not x)))

Explain why the sentences are legal definitions or why they fail to be legal definitions.

-97-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Grammatical Terminology: The components of compound sentences have names. We have
introduced some of these names on an informal basis; for better communication, we introduce all
useful ones here. The second component of a definition, that is, the non-empty sequence of
variables, is a neaber. Accordingly, the expression component of a definition is called soby. The
variables that follow the first variable in a header are the parameTErs of a function.

(define (<function-name> <parameter> ...<parameter>) <body>)
(<function> <argument> ...<argument>)
(cond (<question> <answer>) <cond-clause> ...)

Figure 22: Syntactic naming conventions

People who think of definition as the definition of a mathematical function also use the
terminology LerT-HAND siDE for a definition's header and riGut-HaND sipE for the body. For the same
reason, the first component in an application is called runcrion and the remaining components are
referred to as arguments. Occasionally, we also use ACTUAL ARGUMENTS.

Finally, a cond-expression consists of cond-lines or cond-clauses. Each ll‘he consists of two

expressions: the question and the answer. A question is also called a CONDITION

Figure 22 provides a summary of the conventions.

8.4 The Meaning of Schemerr»

When DrScheme evaluates an expression, it uses nothing but the laws of arithmetic and algebra
to convert an expression into a value. In ordinary mathematics courses, values are just numbers.
We also include symbols, booleans, and indeed all constants:

<val> = <con>

The collection of values is thus just a subset of the collection of expressions.

Now that we have defined the set of values, it is easy to introduce and to explain the evaluation
rules. The rules come in two categories: those that appeal to arithmetic knowledge and those that
rely on a small amount of algebra. First, we need an infinite number of rules like those of
arithmetic to evaluate applications of primitives:

(+ 1 1) =2
(- 21) =1

But Scheme "“arithmetic" is more general than just number crunching. It also includes rules for
dealing with boolean values, symbols, and lists like these:

-08-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



(not true) = false
(symbol=? 'a 'b) = false
(symbol=? 'a 'a) = true
Second, we need one rule from algebra to understand how the application of a user-defined
function advances computation. Suppose the Definitions window contains the definition

(define (f x-1 ... x-n)
exp)
and £, x-1, ..., x-nare variables and exp is some (legal) expression. Then an application of

a function is governed by the law:

(£ v-1 ... v-n) =cxpwithall x-1 ... x-nreplacedbyv-1 ... v-n

where v-1 ... v-nis asequence of values that is as long as x-1 ... x-n.

This rule is as general as possible, so it is best to look at a concrete example. Say the definition is

(define (poly x V)
(+ (expt 2 x) vy)) |

Then the application (poly 3 5) can be evaluated as follows:

(poly 3 5)

(+ (expt 2 3) 5))
;7 This line is (+ (expt 2 x) w
(+ 8 5) \
=13 0

These last two steps follow from plam arithmetic.

Third and finally, we ne d some rules that help us determine the value of cond-expressions.
These rules are algebraic rules but-are not a part of the standard algebra curriculum:

o cond_false: when the first condition is false:

° (cond

° [false ...]

° [expl exp2]

° )

° = (cond

° ; The first line disappeared.
° [expl exp?2]

° cel)
then the first cond-line disappears;

e cond_true: when the first condition is true:

° (cond
° [true exp]
° cel)
° = exp

-99.-

X -
FlyHeart.com

TEAM FLY PRESENTS



the entire cond-expressions is replaced by the first answer;

o cond_else: when the only line left is the else-line:

° (cond
° [else exp])
° = exp

the cond-expressions is replaced by the answer in the else-clause.
No other rules are needed to understand cond.

Consider the following evaluation:

(cond
[false 1]
[true (+ 1 1)]
[else 3]) ]

(cond
[true (+ 1 1)]
[else 3])

= (+ 1 1)

=2

It first eliminates a cond-line a
plain arithmetic again.

The rules are equations of the form tha we use in arithmetic and algebra on a daily basis. Indeed,
the same laws apply to this system of equations as to those in mathematics. For example, if a =
pandb = c, then we also know that a = c. A consequence is that as we get better at hand-
evaluations, we can skip obvious steps and combine several equational inferences into one. Here
is one shorter version of the previous evaluation:

(cond
[false 1]
[true (+ 1 1)]
[else 3])
= (+ 1 1)
=2

Even more importantly, we can replace any expression by its equal in every context -- just as in
algebra. Here is a another cond-expression and its evaluation:

(cond
[(=10) 0]
[else (+ 1 1)1)
;7 The underlined expression is evaluated first.
= (cond

-100-

X -
FlyHeart.com

TEAM FLY PRESENTS



[false 0]
[else (+ 1 1)1)
;; Here cond false applies.
(cond
[else (+ 1 1)1)
;; Using cond else, we now get an arithmetic expression.
(+ 1 1)
2

For the first step, we evaluated the nested, underlined expression, which is clearly essential here,
because no cond rule would apply otherwise. Of course, there is nothing unusual about this kind
of computing. We have done this many times in algebra and in the first few sections of this book.

Exercise 8.4.1. Evaluate the following expressions step by step:

1. (+ (* (/ 12 8) 2/3)
(= 20 (sqrt 4)))

2 (cond
[(= 0 0) false]
[(> 0 1) (symbol=? 'a 'a)] P
[else (= (/ 1 0) 9)]) 8
|
3. (cond |
[(= 2 0) false]
[(> 2 1) (symbol=? 'a 'a)]

[else (=(/ 12)9)]);

Exercise 8.4.2. Suppose the Definitions W
\/\\“ ‘

;7 £ : number number —}Anumb
(define (f x y) —-

(+ (* 3 x) (* yv

Show how DrScheni:/e/é\ié:h}ateS\‘\\ghq;;fé'llowing expressions, step by step:
1. (¢ (£12) (£2\1))
2. (£1 (* 2 3))

3.(F(f1(*23))19);

8.5 Errors

Parenthesized sentences may or may not belong to Scheme, depending on whether or not they
are legal according to the grammar in figure 21. If DrScheme verifies that a sentence does not
belong to the language dubbed Beginning Student, it signals a syNTAX ERROR.

The remaining expressions are syntactically legal, but some of those may still pose problems for
our evaluation rules. We say that such legal expressions contain LOGICAL ERRORS OF RUN-TIME ERRORS.
Consider the simplest example: (/ 1 0). We already know from mathematics that

1

-101-

X -
FlyHeart.com

TEAM FLY PRESENTS



does not have a value. Clearly, since Scheme's calculations must be consistent with mathematics,
it too must not equate (/ 1 0) with a value.

In general, if an expression is not a value and if the evaluation rules allow no further
simplification, we say that an error occurred or that the function raises an error signal.
Pragmatically this means that the evaluation stops immediately with an appropriate error
message, such as "/: divide by zero" for division by zero.

For an example, consider the following evaluation:

(+ (* 20 2) (/ 1 (- 10 10)))
(+ 40 (/ 1 0))
= /: divide by zero

The error eliminates the context (+ 40 ...) around (/ 1 0), which represents the remainder of
the computation with respect to the division.

To understand how run-time errors are signaled, we must inspect the evaluation rules again.
Consider the function

;; my-divide : number -> number |
(define (my-divide n) ~J
(cond
[(=n 0) 'inf]

[else (/ 1 n)l))

Now suppose we apply my-divide to 0. The’irﬁ\:i\ he firsts
(my-divide 0)
= (cond

[(= 0 0) '3
[else (/<X Q |

It would obviously be wrong to say that the function signals the error **/: divide by zero" now,
even though an evaluation of the underlined subexpression would demand it. After all, (= 0 0)
is true and therefore the application has a proper result:

(my-divide 0)

(cond
[(= 0 0) '"inf]
[else (/ 1 0)1])

(cond
[true 'inf]
[else (/ 1 0)1])

= 'inf

Fortunately, our laws of evaluation take care of these situations automatically. We just need to
keep in mind when the laws apply. For example, in

(+ (* 20 2) (/ 20 2))

-102-

X -
FlyHeart.com

TEAM FLY PRESENTS



the addition cannot take place before the multiplication or division. Similarly, the underlined
division in

(cond
[(= 0 0) '"inf]
[else (/ 1 0)1)

cannot be evaluated until the corresponding line is the first condition in the cond-expression.

As a rule of thumb, it is best to keep the following in mind:

Guideline on Expression Evaluation

Simplify the outermost (and left-most) subexpression that is ready for evaluation.

While this guideline is a simplification, it always explains Scheme's results.

In some cases, programmers also want to define functions that raise errors. Recall the checked
version of area-of-disk from section 6: 1

;; checked-area-of-disk : Scheme-value -> boolean |

;; to compute the area of a disk with radius ¥) if v is\a number

(define (checked-area-of-disk v) D
(cond

[ (number? v) (area-of-disk v)]

[else (error 'checked-area-of-dis

= (- (cond A\ g
[ (number? ‘a) (area-of-disk 'a)]
[else (error” 'checked-area-of-disk "number expected™) ])
(checked-area-of-disk 10))

= (- (cond
[false (area-of-disk 'a)]
[else (error 'checked-area-of-disk "number expected")])
(checked-area-of-disk 10))

= (- (error 'checked-area-of-disk "number expected")
(checked-area-of-disk 10))

= checked-area-of-disk : number expected

In other words, when we evaluate an the error expression, we proceed as if we had encountered
a division by zero.

8.6 Boolean Expressions

-103-

X -
FlyHeart.com

TEAM FLY PRESENTS



Our current definition of the Beginning Student Scheme language omits two forms of
expressions: and and or expressions. Adding them provides a case study of how to study new
language construct. We must first understand their syntax, then their semantics, and finally their
pragmatics.

Here is the revised grammar:

<exp> = (and <exp> <exp>)
| (or <exp> <exp>)

The grammar says that and and or are keywords, each followed by two expressions. At first
glance, the two look like (primitive or function) applications. To understand why they are not,
we must look at the pragmatics of these expressions first.

Suppose we need to formulate a condition that determines whether the n-th fraction of 1 is m:

(and (not (= n 0))
(= (/ 1 n) m))

We formulate the condition as an and combination of two boolean expressyons because we don't
wish to divide by 0 accidentally. Next, assume n becomes 0 durmg the: cohrse of the evaluation.
Then the expression becomes ~

(and (not (

Once we understand‘:\' ovif
matching rules. Better still, w.
to these expressions:

d and or expressmns should be evaluated, it is easy to formulate
e can formulate expressions in our first language that are equivalent

(and <exp-1> <exp-2>)
Tcond
[<exp-1> <exp-2>]
[else false])

and

(or <exp-1> <exp-2>)
(c

<exp 1> true]
else <exp-2>])

con

[

[
These equivalences simplify what actually takes place in DrScheme but they are a perfectly
appropriate model for now.

-104-

X -
FlyHeart.com

TEAM FLY PRESENTS



8.7 Variable Definitions

Programs consist not only of function definitions but also variable definitions, but these weren't
included in our first grammar.

Here is the grammar rule for variable definitions:

<def>= (define <var> <exp>)

The shape of a variable definition is similar to that of a function definition. It starts with a **(",
followed by the keyword define, followed by a variable, followed by an expression, and closed
by a right parenthesis "*)" that matches the very first one. The keyword define distinguishes
variable definitions from expressions, but not from function definitions. For that, a reader must
look at the second component of the definition.

Next we must understand what a variable definition means. A variable definition like

(define RADIUS 5) ‘f;
< ‘
has a plain meaning. It says that wherever we encounter RADIUS durlng an evaluatlon we may

replace it with 5.

3 the right-hand side, it must

When DrScheme encounters a definition with a prope
ht-hand side of the definition

evaluate that expression immediately. For example,

A~
(define DIAMETER (* 2 RADIUS‘\

is the expression (* 2 RapIUS). Itsvalue is 10 because RADTUS stands for 5. Hence we can act

as 1f we had written ~

(define DIAMETER

In short, when DrScheme encounters a variable definition, it determines the value of the right-
hand side. For that step, it uses all those definitions that precede the current definition but not
those that follow. Once DrScheme has a value for the right-hand side, it remembers that the
name on the left-hand side stands for this value. Whenever we evaluate an expression, every
occurrence of the defined variable is replaced by its value.

(define RADIUS 10)
(define DIAMETER (* 2 RADIUS))

;; area : number -> number
;; to compute the area of a disk with radius r
(define (area r)

(* 3.14 (* r r)))

(define AREA-OF-RADIUS (area RADIUS))
Figure 23: An example of variable definitions

-105-

X -
FlyHeart.com

TEAM FLY PRESENTS



Consider the sequence of definitions in figure 23. As DrScheme steps through this sequence of
definitions, it first determines that RAp1US stands for 10, DIAMETER for 20, and area is the name
of a function. Finally, it evaluates (area RADIUS) to 314.0 and associates AREA-OF-RADIUS
with that value.

Exercise 8.7.1. Make up five examples of variable definitions. Use constants and expressions
on the right-hand side.

Exercise 8.7.2. Evaluate the following sequence of definitions

(define RADIUS 10)
(define DIAMETER (* 2 RADIUS))

(define CIRCUMFERENCE (* 3.14 DIAMETER))
by hand.

Exercise 8.7.3. Evaluate the following sequence of definitions

(define PRICE 5) P

(define SALES-TAX (* .08 PRICE))

(define TOTAL (+ PRICE SALES-TAX))

by hand.

8.8 Structure Definitions

We still have to understand th tax and semantics of one more Scheme construct: define-
struct. When we defin a stru re really define several primitive operations: a constructor,
several selectors, and a predicate. Hence, define-struct is by far the most complex Scheme
construct we use. \V

A structure definition is a third form of definition. The keyword define-struct distinguishes
this form of definition from function and variable definitions. The keyword is followed by a
name and a sequence of names enclosed in parentheses:

<def> = (define-struct <var0> (<var-1> ... <var-n>)).

The names in a define-struct definition must be chosen as if they were function names,
though none of them is used as a function (or variable) name.

Here is a simple example:

(define-struct point (x y z))

Since point, %, v, and z are variables and the parentheses are placed according to the
grammatical pattern, it is a proper definition of a structure. In contrast, these two parenthesized
sentences

-106-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define-struct (point x y z))

(define-struct point x y z)

are improper definitions, because define-struct is not followed by a single variable name and
a sequence of variables in parentheses.

A define-struct definition introduces new primitive operations. The names of these operations
are formed from those that occur in the definition. Suppose a data structure definition has the
following shape:

(define-struct ¢ (s-1 ... s-n))
Then Scheme introduces the following primitive operations:

1. make-c:a CONSTRUCTOR;
2. c-s-1 ... c-s-n: a series of seLecTors; and
3. c?:a PREDICATE.

These primitives have the same status as +, -, or *. Before we can understand the rules that
govern these new primitives, however, we must return to the definition of Values After all, the
purpose of define-struct is to introduce a new class of values: structure

Simply put, the set of values no longer consists of Just constant ut also of structures, which
compound several values into one. In terms of our | of Values, we must add one clause
per define-struct: '

\ %v§i>...<val>)

Let us return to the points stru ture ,'Smce the list of fields contains three names, (make-point
u v w) is avalue if u, v, “and w are ‘values.

Now we are in a position to understand the evaluation rules of the new primitives. If c-s-1 is
applied to a c structure, it returns the first component of the value. Similarly, the second selector
extracts the second component, the third selector the third component, and so on. The
relationship between the new data constructor and the selectors is best characterized with n
equations:

(c=s-1 (make-c V-1 ... V-n)) = V-1
(c=s-n (make-c v-1 ... V-n)) = V-n
where v-1 ... v-nis a sequence of values that is as long as s-1 ... s-n.

For our running example, we get the equations

(point-x (make-point V U W)) =V
(point-y (make-point V U W)) = U
(point-z (make-point V U W)) =W

-107-

X -
FlyHeart.com

TEAM FLY PRESENTS



In particular, (point-y (make-point 3 4 5)) isequalto 4,and (point-x (make-point
(make-point 1 2 3) 4 5)) evaluatesto (make-point 1 2 3) because the latter is also a
value.

The predicate c2 can be applied to any value. It returns true if the value is of kind c and false
otherwise. We can translate both parts into equations. The first one,

(c? (make-c V-1 ... V-n)) = true ,
relates c2 and values constructed with make-c; the second one,

(c? V) = false; if V is a value not constructed with make-c ,
relates c? to all other values.

Again, the equations are best understood in terms of our example. Here are the general equations:

(point? (make-point V U W)) = true

(point? U) = false ; if U 1is value, but not a point structure.
M
‘\

Thus,(point? (make-point 3 4 5)) 1S true and (point? 3)i§f§is§4

Exercise 8.8.1. Distinguish legal from illegal sentences

(define-struct personnel-record
(define-struct oops ()) .
(define-struct child (dob/date\
(define-struct (child- person;

( .

Nbhwbd =

define-struct c fd’(parenté/de date))

Explain why the sen{aﬂc& s are le gal de
define- structdeﬁnﬂuﬁm \

ne-struct definitions or how they fail to be legal

Exercise 8.8.2. Which of the following are values?

1. (make-point 1 2 3)
2. (make-point (make-point 1 2 3) 4 5)
3 (make-point (+ 1 2) 3 4)

Exercise 8.8.3. Suppose the Definitions window contains

(define-struct ball (x y speed-x speed-y))
Determine the results of the following expressions:

1. (number? (make-ball 1 2 3 4))
2. (ball-speed-y (make-ball (+ 1 2) (+ 3 3) 2 3))
3. (ball-y (make-ball (+ 1 2) (+ 3 3) 2 3))

Also check how DrScheme deals with the following expressions:

-108-

X -
FlyHeart.com

TEAM FLY PRESENTS



1. (number? (make-ball 1 3 4))
2. (ball-x (make-posn 1 2))
3. (ball-speed-y 5)

Verity your solutions with DrScheme.

<def>= (define (<var> <var> ...<var>) <exp>)

| (define <var> <exp>)

| (define-struct <var0> (<var-1> ...<var-n>))
<exXp> = <yar>

| <con>

| (<prm> <exp> ...<exp>)

| (<var> <exp> ...<exp>)

| (cond (<exp> <exp>) . ..(<exp> <exp>))

| (cond (<exp> <exp>) ...(else <exp>))

| (and <exp> <exp>) P

| (or <exp> <exp>) ‘ \
~_ > |

* We use different fonts to distinguish tﬁe word of different categories. Constants and primitive
operations are type set in sans Senf variabl m;} talics, and keywords in boldface.

% This grammar descnbei only that pogﬁdn of Scheme we have used so far (minus variable and
structure definitions), whlch still covers a large subset of the full language. Scheme is a bit larger,
and we will get to know mQre of it in the remaining parts of the book.

-109-

X -
FlyHeart.com

TEAM FLY PRESENTS



Part 11

Processing Arbitrarily Large Data

-110-

v
FlyHeart.com

TEAM FLY PRESENTS



Section 9

Compound Data, Part 2: Lists

Structures are one way to represent compound information. They are useful when we know how
many pieces of data we wish to combine. In many cases, however, we don't know how many
things we wish to enumerate, and in that case we form a list. A list can be of arbitrary length, that
is, it contains a finite, but undetermined number of pieces of data.

Forming lists is something that all of us do. Before we go grocery shopping, we often write down
a list of items that we want to purchase. When we plan out a day in the morning, we write down
a list of things to do. During December, many children prepare Christmas wish lists. To plan a
party, we list the people we want to invite. In short, arranging information in the form of lists is a
ubiquitous part of our life, and we should learn to represent lists as Scheme data. In this section,

we first learn to create lists and then move on to developing functions that consume lists.
‘ |

9.1 Lists

When we form a list, we always start out with the empt "

empty

PN

represents the empty list. From here
is a simple example:

(cons 'Mercury”

In this example, we constructed a list from the empty list and the symbol 'Mercury. Figure 25
presents this list in the same pictorial manner we used for structures. The box for cons has two
fields: first and rest. In this specific example the first field contains 'Mercury and the rest
field contains empty.

(cons 'Mercury empty) "Mercury ‘empty ‘

(cons 'Venus (cons 'Mercury empty)) 'Venus

'Mercury ‘empty ‘ ‘

(cons 'Earth (cons 'Venus (cons 'Mercury empty)))  |'Earth "Venus

'Mercury ‘empty ‘ ‘ ‘

Figure 25: Building a list

-111-

X -
FlyHeart.com

TEAM FLY PRESENTS



Once we have a list with one item on it, we can construct lists with two items by using cons
again:

(cons 'Venus (cons 'Mercury empty))

The middle row of figure 25 shows how we should imagine the second list. It is also a box of
two fields, but this time the rest field contains a box. Indeed, it contains the box from the top
row of the same figure.

Finally, we construct a list with three items:

(cons 'Earth (cons 'Venus (cons 'Mercury empty)))

The last row of figure 25 illustrates the list with three items. Its rest field contains a box that
contains a box again. So, as we create lists we put boxes into boxes into boxes, etc. While this
may appear strange at first glance, it is just like a set of Chinese gift boxes or a set of nested
drinking cups, which we sometimes get for our early birthdays. The only difference is that
Scheme programs can nest lists much deeper than any artist could nest physical boxes.

Exercise 9.1.1. Create Scheme lists that represent Rt

1. the list of all planets in our solar system;
the following meal: steak, pommes-frites, beans, bread, w
cream; and

3. the list of basic colors.

with 10 numbers:

(cons 0
(cons 1
(cons 2
(cons 3
(cons 4
(cons 5
(cons ©
(cons 7
(cons 8
(cons 9 empty))))))))))

To build it requires 10 list constructions and one empty list.

In general a list does not have to contain values of one kind, but may contain arbitrary values:

(cons 'RobbyRound
(cons 3
(cons true
empty)))

Here the first item is a symbol, the second one is a number, and the last one a boolean. We could
think of this list as the representation of a personnel record that includes the name of the
-112-

X -
FlyHeart.com

TEAM FLY PRESENTS



employee, the number of years spent at the company, and whether the employee has health
insurance through the company plan.

Now suppose we are given a list of numbers. One thing we might wish to do is add up the
numbers on the list. To make this more concrete, let us assume that we are only interested in lists
of three numbers:

A list-of-3-numbers 1is

(cons x (cons y (cons z empty)))
where x, v, and z are numbers.

We write down the contract, purpose, header, and examples as before:

;; add-up-3 : list-of-3-numbers -> number

;; to add up the three numbers in a-list-of-3-numbers

;; examples and tests:

H (= (add-up-3 (cons 2 (cons 1 (cons 3 empty)))) 6)

H (= (add-up-3 (cons 0O (cons 1 (cons 0 empty)))) 1)
(define (add-up-3 a-list-of-3-numbers) ...) 1

To define the body, however presents a problem A constructed hst 15 lrke‘ a structure Hence we

constructed list: first and rest.? The flr
construct a list; the rest operatlon extrac

(first (cons 1
=10

(rest (cons 10 empty))
= empty

(first (rest (cons 10 (cons 22 empty))))
(first (cons 22 empty))
= 22

The last one demonstrates how to evaluate nested expressions. The key is to think of (cons a-
value a-list) as a value. And, as always, we start with the evaluation of the innermost
parenthesized expressions that can be reduced, just as in arithmetic. In the above calculations, the
expressions that are about to be reduced next are underlined.

Using first and rest we can now write down a template for add-up-3:

;; add-up-3 : list-of-3-numbers -> number
;; to add up the three numbers in a-list-of-3-numbers
(define (add-up-3 a-list-of-3-numbers)

(first a-list-of-3-numbers)

-113-

X -
FlyHeart.com

TEAM FLY PRESENTS



(first (rest a-list-of-3-numbers))
(first (rest (rest a-list-of-3-numbers))) ... )

The three expressions remind us that the input, called a-1ist-of-3-numbers, contains three
components and how to extract them.

Exercise 9.1.2. Let 1 be the list

(cons 10 (cons 20 (cons 5 empty)))
What are the values of the following expressions?

(rest 1)

(first (rest 1))

(rest (rest 1))

(first (rest (rest 1)))
(

rest (rest (rest 1)))

A

Exercise 9.1.3. Finish the development of add-up-3, that is, define the body and test the
complete function on some examples. ‘\ J
A list of three numbers is one possible representation for 3- d1men510nal pomts The distance of a
3-dimensional point to the origin of the coordinate grid is com; ted in the same manner as that
of 2-dimensional point: by squaring the numbers, addln th m up, andiﬁtaklng the square root.

Use the template for add-up-3 to develop dis
of a 3-dimensional point to the origin. (-

0-for-3, which computes the distance

sts of two symbols. Then develop the function

Exercise 9.1.4. Provide a data eﬁmtlo
1es a list of two symbols and determines whether one of them

contains-2-doll?, which cons
is 'doll.

On the Precise Relationship between Cons and Structures: The discussion of cons, first,
and rest suggests that cons creates a structure and first and rest are ordinary selectors:

(define-struct pair (left right))

(define (our-cons a-value a-list) (make-pair a-value a-list))
(define (our-first a-pair) (pair-left a-pair))

(define (our-rest a-pair) (pair-right a-pair))

(define (our-cons? x) (pair? x))

Although these definitions are a good first approximation, they are inaccurate in one important
point. DrScheme's version of cons is really a checked version of make-pair. Specifically, the

cons operation ensures that the right field is always a list, that is, constructed or empty. This
suggests the following refinement:

(define (our-cons a-value a-list)
(cond

-114-

X -
FlyHeart.com

TEAM FLY PRESENTS



[ (empty? a-list) (make-pair any a-list)]
[ (our-cons? a-list) (make-pair any a-list)]
[else (error 'cons "list as second argument expected")]))

The definitions for our-first, our-rest, and our-cons? remain the same. Finally, we must
also promise not to use make-pair directly so that we don't accidentally build a bad list.

9.2 Data Definitions for Lists of Arbitrary Length

Suppose we wish to represent the inventory of a toy store that sells such things as dolls, make-up
sets, clowns, bows, arrows, and soccer balls. To make an inventory, a store owner would start
with an empty sheet of paper and slowly write down the names of the toys on the various shelves.

Representing a list of toys in Scheme is straightforward. We can simply use Scheme's symbols
for toys and then construct lists from them. Here are a few short samples:

(cons 'ball empty)

(cons 'arrow (cons 'ball empty))

(cons 'clown empty) (
(cons 'bow (cons 'arrow (cons 'ball empty))) ~ ||
(cons 'clown (cons 'bow (cons 'arrow (cons 'ball empty)b))

For a real store, the list will contain many more items kand"the list will grow and shrink over time.
In any case, we cannot say in advance how many 1temS ese 1nventory lists will contain. Hence,
if we wish to develop a function that consumes such 1 ve cannot simply say that the input is

a list with either one, two, three, or four 1tem . We m ¢ prepared to think about lists of
arbitrary length. ‘ N

In other words, we need a data definition that precisely describes the class of lists that contain an
arbitrary number of symbyolks. Unfortunately, the data definitions we have seen so far can only
describe classes of data where each item is of a fixed size, such as a structure with a specific
number of components or a list with a specific number of items. So how can we describe a class
of lists of arbitrary size?

Looking back we see that all our examples fall into one of two categories. The store owner starts
with an empty list and constructs longer and longer lists. The construction proceeds by
constructing together a toy and another list of toys. Here is a data definition that reflects this
process:

A list-of-symbols is either

1. the empty list, empty, or
2. (cons s los) where s is a symbol and 1os is a list of symbols.

This definition is unlike any of the definitions we have seen so far or that we encounter in high
school English or mathematics. Those definitions explain a new idea in terms of old, well-
understood concepts. In contrast, this definition refers to itself in the item labeled 2, which
implies that it explains what a list of symbols is in terms of lists of symbols. We call such
definitions SELF-REFERENTIAL OT RECURSIVE.

-115-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



At first glance, a definition that explains or specifies something in terms of itself does not seem
to make much sense. This first impression, however, is wrong. A recursive definition, such as the
one above, makes sense as long as we can construct some elements from it; the definition is
correct if we can construct all intended elements.*

Let's check whether our specific data definition makes sense and contains all the elements we are
interested in. From the first clause we immediately know that empty is a list of symbols. From
the second clause we know that we can create larger lists with cons from a symbol and a list of
symbols. Thus (cons 'ball empty) is a list of symbols because we just determined that empty
is one and we know that 'do11 is a symbol. There is nothing special about 'do11. Any other
symbol could serve equally well to form a number of one-item lists of symbols:

(cons 'make-up-set empty)
(cons 'water-gun empty)

Once we have lists that contain one symbol, we can use the same method to build lists with two
items:

(cons 'Barbie (cons 'robot empty))
(cons 'make-up-set (cons 'water-gun empty)) o~
(cons 'ball (cons 'arrow empty)) )

in-an arbltrary number of symbols.

From here, it is easy to see how we can form lists that ¢ b
are adequately described by our

Exercise 9.2.2. Doall
a concise argument.

Exercise 9.2.3. Provide a data definition for the class of list of booleans. The class contains all
arbitrarily large lists of booleans.

9.3 Processing Lists of Arbitrary Length

A real store will want to have a large inventory on-line, that is, put into a computer, so that an
employee can quickly determine whether a toy is available or not. For simplicity, assume that we
need contains-dol1?, a function that checks whether the store has a 'do11. Translated into
Scheme terminology, the function determines whether 'do11 occurs on some list of symbols.

Because we already have a rigorous definition of contains-do112's input, we turn to the
contract, header, and purpose statement:

;; contains-doll? : list-of-symbols -> boolean
;; to determine whether the symbol 'doll occurs on a-list-of-symbols
(define (contains-doll? a-list-of-symbols) ...)

-116-

X -
FlyHeart.com

TEAM FLY PRESENTS



Following the general design recipe, we next make up some examples that illustrate contains-
do11? purpose. First, we clearly need to determine the output for the simplest input: empty.
Since the list does not contain any symbol, it certainly does not contain 'do11, and the answer
should be false:

(boolean=? (contains-doll? empty)
false)

Next, we consider lists with a single item. Here are two examples:

(boolean=? (contains-doll? (cons 'ball empty))
false)

(boolean=? (contains-doll? (cons 'doll empty))
true)

In the first case, the answer is fa1se because the single item on the list is not 'do11; in the
second case, the item is 'do11, and the answer is true. Finally, here are two more general
examples, with lists of several items:

(boolean=? (contains-doll? (cons 'bow (cons 'ax (cons 'ball empty))))
false) R |

(boolean=? (contains-doll? (cons 'arrow (cons 'doli[(cqbb 'ball empty))))
true) s

does,not contaln 'doll, and in

Again, the answer in the first case must be false bgc ]
eitems on the list provided to the

the second case it must be true because 'dol1 is o1
function. ‘

The next step is to design a function temp ate that\m tches the data definition. Since the data
definition for lists of symbols has two clauses, the function's body must be a cond-expression.
The cond-expression detert which of the two kinds of lists the function received: the empty
list or a con structed{}”i; -

(define (contains
(cond

[ (empty? a-list-of-symbols) ...]

[ (cons? a-list-of-symbols) ...]))

doll? a-list-of-symbols)

Instead of (cons? a-list-of-symbols), We can use else in the second clause.

We can add one more hint to the template by studying each clause of the cond-expression in turn.
Specifically, recall that the design recipe suggests annotating each clause with selector
expressions if the corresponding class of inputs consists of compounds. In our case, we know

that empty does not have compounds, so there are no components. Otherwise the list is
constructed from a symbol and another list of symbols, and we remind ourselves of this fact by
adding (first a-list-of-symbols) and (rest a-list-of-symbols) to the template:

(define (contains-doll? a-list-of-symbols)

(cond
[ (empty? a-list-of-symbols) ...]
[else ... (first a-list-of-symbols) ... (rest a-list-of-
symbols) ...1))

-117-

X -
FlyHeart.com

TEAM FLY PRESENTS



Now that we have a template based on our design recipes for mixed and compound data, we turn
to the definition of the function's body, dealing with each cond-clause separately. If (empty? a-
list-of-symbols) is true, the input is the empty list, in which case the function must produce
the result false. In the second case, (cons? a-list-of-symbols) is true. The annotations in
the template remind us that there is a first symbol and the rest of the list. So let us consider an
example that falls into this category:

(cons 'arrow
(cons
empty)))

The function, just like a human being, must clearly compare the first item with 'do11. In this
example, the first symbol is 'arrow and not 'do11, so the comparison will yield false. If we
had considered some other example instead, say,

(cons 'doll
(cons
empty)))

the function would determine that the first item on the input is 'do11, andr would therefore
respond with t rue. All of this implies that the second line in the cond—expnessmn should contain
another cond-expression: h

(define (contains-doll? a-list-of-symbols)

(cond P

[ (empty? a-list-of-symbols) false
[else (cond e

[ (symbol="? (fi;;t a

true] ‘

[else

Furthermore, if the compar
done and produces true, tc

If the comparison yields false, we are left with another list of symbols: (rest a-list-of-
symbols). Clearly, we can't know the final answer in this case, because depending on what

" represents, the function must produce true or false. Put differently, if the first item is
not 'dol1, we need some way to check whether the rest of the list contains 'do11.

Fortunately, we have just such a function: contains-do11?, which according to its purpose
statement determines whether a list contains 'do11. The purpose statement implies that if 1 is a
list of symbols, (contains-dol1? 1) tells us whether 1 contains the symbol 'do11. Similarly,
(contains-doll? (rest 1)) determines whether the rest of 1 contains 'do11. And in the same
vein, (contains-doll? (rest a-list-of-symbols)) determines whether or not 'dol1 is in
(rest a-list-of-symbols), which is precisely what we need to know now.

Here is the complete definition of the function:

(define (contains-doll? a-list-of-symbols)
(cond
[ (empty? a-list-of-symbols) false]
[else (cond

-118-

X -
FlyHeart.com

TEAM FLY PRESENTS



[ (symbol=? (first a-list-of-symbols) 'doll) true]
[else (contains-doll? (rest a-list-of-symbols))])]1))

It consumes a list of symbols and determines whether or not it is empty. If it is, the result is
false. Otherwise, the list is not empty and the result of the function depends on the first item of
the list. If the first item is 'do11, the result is t rue; if not, the function's result is the result of
searching the rest of the input list -- whatever it is.

Exercise 9.3.1. Use DrScheme to test the definition of contains-do11?2 on our examples:

empty

(cons 'ball empty)

(cons 'arrow (cons 'doll empty))

(cons 'bow (cons 'arrow (cons 'ball empty)))

Exercise 9.3.2. Another way of formulating the second cond-clause in the function contains-
dol11? is to understand

(contains-doll? (rest a-list-of-symbols))
as a condition that evaluates to either true or false, and to combme it approprlately with the
condition ~Y

(symbol=? (first a-list-of-symbols) 'dolly

Reformulate the definition of contains-dol1? acco n this observation.

Whic 1 consumes a symbol and a list of

symbols and determines whether or not the symbol occurs in the list.

9.4 Designing K un tions for Self-Referential Data

Definitions

At first glance, self-referential data definitions seem to be far more complex than those for
compound or mixed data. But, as the example in the preceding subsection shows, our design
recipes still work. Nevertheless, in this section we discuss a new design recipe that works better
for self-referential data definitions. As implied by the preceding section, the new recipe
generalizes those for compound and mixed data. The new parts concern the process of
discovering when a self-referential data definition is needed, deriving a template, and defining
the function body:

o Data Analysis and Design: If a problem statement discusses compound information of
arbitrary size, we need a recursive or self-referential data definition. At this point, we
have only seen one such class, 1ist-of-symbols, but it is easy to imagine other, yet
similar classes of lists. We will get to know many other examples in this and the
following part.**

For a recursive data definition to be valid, it must satisfy two conditions. First, it must
contain at least two clauses. Second, at least one of the clauses must not refer back to the

-119-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



-120-

definition. It is good practice to identify the self-references explicitly with arrows from
the references in the data definition back to its beginning.

Our running example for this section are functions that consume lists of symbols:

A listofsymbols is either

L the empty list, empty, or

2. (oons s lof ) where s i2 asymbol and lof is a |list of symbaols |

Template: A self-referential data definition specifies a mixed class of data, and one of
the clauses should specify a subclass of compound data. Hence the design of the template
can proceed according to the recipes in sections 6.5 and 7.2. Specifically, we formulate a
cond-expression with as many cond-clauses as there are clauses in the data definition,
match each recognizing condition to the corresponding clause in the data definition, and
write down appropriate selector expressions in all cond-lines that process compound
values. o~ |

(define (fun-for ﬁfliiﬂj s_,lluba]’s]
(vond )
[(empty ? a-lisb-of-symibals) ...
[else. .. (first a-list-gf-symbals) ... | irest a-lis f-of-symbals) | o

For simplicity, this book will use a textual alternative to arrows. Instead of drawing an
arrow, the templates contain self-applications of the function to the selector expression(s):

(define (fun-for-los a-list-of-symbols)

(cond
[ (empty? a-list-of-symbols) ...]
[else ... (first a-list-of-symbols)

(fun-for-los (rest a-list-of-symbols)) ...1))
We refer to these self-applications as NATURAL RECURSIONS.

Body: For the design of the body we start with those cond-lines that do not contain
natural recursions. They are called Base cases. The corresponding answers are typically
easy to formulate or are already given by the examples.

X -
FlyHeart.com

TEAM FLY PRESENTS



Then we deal with the self-referential cases. We start by reminding ourselves what each
of the expressions in the template line computes. For the recursive application we assume
that the function already works as specified in our purpose statement. The rest is then a
matter of combining the various values.

Suppose we wish to define the function how-many, which determines how many symbols
are on a list of symbols. Assuming we have followed the design recipe, we have the
following:

;; how-many : list-of-symbols -> number
;; to determine how many symbols are on a-list-of-symbols
(define (how-many a-list-of-symbols)

(cond
[ (empty? a-list-of-symbols) ...]
[else ... (first a-list-of-symbols)

(how-many (rest a-list-of-symbols)) ...]))

The answer for the base case is 0 because the empty list contains nothing. The two
expressions in the second clause compute the first item and the number of symbols on
the (rest a-list-of-symbols). To compute how many symbolsthere are on all of a-
list-of-symbols, we just need to add 1 to the value of the latter F?{pression:

(define (how-many a-list-of-symbols)
(cond

[ (empty? a-list-of-symbols) O
[else (+ (how-many (rest a< :

discuss are performed as before The following section dlscusses several examples in detail.

Phase Goal Activity
Data to formulate a data |develop a data definition for mixed data with at least
Analysis definition two alternatives sone alternative must not refer to the
and Design definition sexplicitly identify all self-references in the
data definition
Contract to name the name the function, the classes of input data, the class of
Purpose and function; output data, and specify its purpose:
Header to specify its ;s name :inl in2 .. .--> out
classes of ;; to compute . .. fromx/ ...

input data and its | (define (name xI1 x2 ...) ...)
class of output
data;
to describe its
purpose;
to formulate a

-121-

X -
FlyHeart.com

TEAM FLY PRESENTS



header

Examples to characterize the |create examples of the input-output relationship smake
input- sure there is at least one example per subclass

output relationship
via examples

Template to formulate an develop a cond-expression with one clause per
outline alternative sadd selector expressions to each clause «
annotate the body with natural recursions «Test: the
self-references in this template and the data definition

match!
Body to define the formulate a Scheme expression for each simple cond-
function line »explain for all other cond-clauses what each natural
recursion computes according to the purpose statement
Test to discover apply the function to the inputs of the examples =check
mistakes that the outputs are as predicted
(*“typos" and
logic) 1

=

"\eferentlal data
g‘ 9), and 1,8 (pg 10))

Figure 26: Designing a function for sel
(Refines the recipes in figures 4 (pg. §),§f

9.5 More on Processing Slmple ‘L sts

Let us now look at another aspect of i 1nv‘ f\te nagement the cost of an inventory. In addition
to a list of the available toys, a store owner should also maintain a list of the cost of each item.
The cost list permits the ov 0 fdetermlne how much the current inventory is worth or, given
the inventory at the begmnmg of the ear and that of the end of the year, how much profit the
store makes.

A list of costs is most easily‘k“'fepresented as a list. For example:

empty

(cons 1.22 empty)

(cons 2.59 empty)

(cons 1.22 (cons 2.59 empty))

(cons 17.05 (cons 1.22 (cons 2.59 empty)))

Again, for a real store, we cannot place an arbitrary limit on the size of such a list, and functions
that process such cost lists must be prepared to consume lists of arbitrary size.

Suppose the toy store needs a function that computes the value of an inventory from the cost of
the individual toys. We call this function sum. Before we can define sum, we must figure out how
to describe all possible lists of numbers that the function may consume. In short, we need a data
definition that precisely defines what an arbitrarily large list of numbers is. We can obtain this
definition by replacing *“symbol" with ""'number" in the definition of lists of symbols:

A list-of-numbers is either

-122-

X -
FlyHeart.com

TEAM FLY PRESENTS



1. the empty list, empty, or
2. (cons n lon) where n is a number and 1on is a list of numbers.

Given that this data definition is self-referential again, we must first confirm that it actually
defines some lists and that it defines all those inventories that we wish to represent. All of the
examples above are lists of numbers. The first one, empty, is included explicitly. The second and
third are constructed by adding the numbers 1.22 and 2. 59, respectively, to the empty list. The
others are lists of numbers for similar reasons.

As always, we start the development of the function with a contract, header, and purpose
statement:

;5 sum : list-of-numbers -> number
;; to compute the sum of the numbers on a-list-of-nums
(define (sum a-list-of-nums) ...)

Then we continue with function examples:

(= (sum empty)

0) ~

(= (sum (cons 1.00 empty)) o~ L
1.0) |

(= (sum (cons 17.05 (cons 1.22 (cons 2.59 empty A\
20.86)

for (cons 17.05 (cons 1.22 (cons 2.59
empty))),sumshoukiykﬂd

For the design of suI;'S template, we follow the design recipe, step by step. First, we add the

cond-expression:

(define (sum a-list-of-nums)
(cond
[ (empty? a-list-of-nums) ...]
[ (cons? a-list-of-nums) ...]))

The second clause indicates with a comment that it deals with constructed lists. Second, we add
the appropriate selector expressions for each clause:

(define (sum a-list-of-nums)
(cond
[ (empty? a-list-of-nums) ...]
[ (cons? a-list-of-nums)
(first a-list-of-nums) ... (rest a-list-of-nums) ...]))

Finally, we add the natural recursion of sum that reflects the self-reference in the data definition:

(define (sum a-list-of-nums)
(cond

-123-

X -
FlyHeart.com

TEAM FLY PRESENTS



[ (empty? a-list-of-nums) ...]
[else ... (first a-list-of-nums) ... (sum (rest a-list-of-
nums)) ...]J]))

The final template reflects almost every aspect of the data definition: the two clauses, the
construction in the second clauses, and the self-reference of the second clauses. The only part of
the data definition that the function template does not reflect is that the first item of a
constructed input is a number.

Now that we have a template, let us define the answers for the cond-expression on a clause-by-
clause basis. In the first clause, the input is empty, which means that the store has no inventory.
We already agreed that in this case the inventory is worth nothing, which means the
corresponding answer is 0. In the second clause of the template, we find two expressions:

l. (first a-list-of-nums), which extracts the cost of the first toy; and
2. (sum (rest a-list-of-nums)), which, according to the purpose statement of sum,
computes the sum of (rest a-list-of-nums).

From these two reminders of what the expressions already compute for us, we see that the

expression | |

(+ (first a-list-of-nums) (sum (rest a-list- f§

computes the answer in the second cond-clause.

Here is the complete definition of sum:

(define (sum a-list-of-nums)

(cond 7 ‘

[ (empty? a-1i;
[else (+

 ﬂnums) (sum (rest a-list-of-nums)))]))

A comparison of this deﬁhition with the template and the data definition shows that the step from
the data definition to the template is the major step in the function development process. Once
we have derived the template from a solid understanding of the set of possible inputs, we can
focus on the creative part: combining values. For simple examples, this step is easy; for others, it
requires rigorous thinking.

We will see in future sections that this relationship between the shape of the data definition and
the function is not a coincidence. Defining the class of data that a function consumes always
determines to a large extent the shape of the function.

Exercise 9.5.1. Use DrScheme to test the definition of sum on the following sample lists of
numbers:

empty
(cons 1.00 empty)
(cons 17.05 (cons 1.22 (cons 2.59 empty)))

Compare the results with our specifications. Then apply sum to the following examples:

empty
-124-

X -
FlyHeart.com

TEAM FLY PRESENTS



(cons 2.59 empty)
(cons 1.22 (cons 2.59 empty))

First determine what the result should be; then use DrScheme to evaluate the
expressions. ¥¥  Solution

Exercise 9.5.2. Develop the function how-many-symbols, which consumes a list of symbols
and produces the number of items in the list.

Develop the function how-many-numbers, which counts how many numbers are in a list of
numbers. How do how-many-symbols and how-many-numbers differ?

Exercise 9.5.3. Develop the function dollar-store?, which consumes a list of prices
(numbers) and checks whether all of the prices are below 1.

For example, the following expressions should evaluate to true:

(dollar-store? empty)
(not (dollar-store? (cons .75 (cons 1.95 (cons .25 empty)))))
(dollar-store? (cons .75 (cons .95 (cons .25 empty)))) {
< \ \
Generalize the function so that it consumes a list of prices (numbers) and- a threshold price
(number) and checks that all prices in the list are below th “thres hold. L

, which consumes a list of temperature

Exercise 9.5.4. Develop the function check—ranqﬂ“ k
€ B@tween 5°C and 95°C.

measurements and checks whether all measurements..

Generalize the function to check- rang‘e‘, whi nsumes a list of temperature measurements
and a legal interval and checks v hether (

Exercise 9.5.5. Deve

corresponding number. The ﬁrst* git is the least significant, and so on.

Also develop the function cﬁeck—guess—for—list. It implements a general version of the
number-guessing game of exercise 5.1.3. The function consumes a list of digits, which represents
the player's guess, and a number, which represents the randomly chosen and hidden number.
Depending on how the converted digits relate to target, check-guess-for-1ist produces
one of the following three answers: 'TooSmall, 'Perfect, Or 'TooLarge.

The rest of the game is implemented by guess.ss. To play the game, use the teachpack to
guess.ss and evaluate the expression

(guess-with-gui-list 5 check-guess-for-list)
after the functions have been thoroughly developed.

Exercise 9.5.6. Develop the function del1ta, which consumes two price lists, that is, lists of
numbers. The first represents the inventory at the beginning of a time period, the second one the
inventory at the end. The function outputs the difference in value. If the value of the inventory
has increased, the result is positive; if the value has decreased, it is negative.

-125-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Exercise 9.5.7. Define the function average-price. It consumes a list of toy prices and
computes the average price of a toy. The average is the total of all prices divided by the number
of toys.

Iterative Refinement: First develop a function that works on non-empty lists. Then produce a
checked function (see section 7.5) that signals an error when the function is applied to an empty
list

Exercise 9.5.8. Develop the function draw-circles, which consumes a posn p and a list of
numbers. Each number of the list represents the radius of some circle. The function draws
concentric red circles around p on a canvas, using the operation draw-circle. Its result is true,
if it can draw all of them; otherwise an error has occurred and the function does not need to
produce a value.

Use the teachpack draw. ss; create the canvas with (start 300 300). Recall that draw.ss
provides the structure definition for posn (see section 7.1).

Pl
1

# The traditional names are car and cdr, but we will not use these gonseqs“ical names.

* Tt is common that a data definition describes a class of data that contains: more than the
intended elements. This limitation is inherent and is just one of h many symptoms of the limits
of computing. ,

> Numbers also seem to be arbitrarily large F.r\ inexe mirhbers this is an illusion. For precise
integers, this is indeed the case, and We will discuss: them’"later in this part.

-126-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 10

More on Processing Lists

The functions in section 9 consume lists that contain atomic data, especially numbers, symbols,
and booleans. But functions must also be able to produce such lists. Furthermore, they must be
able to consume and produce lists that contain structures. We discuss these cases in this section,
and we continue practicing the use of the design recipe.

10.1 Functions that Produce Lists

Recall the function wage from section 2.3:

;5 wage : number -> number

;; to compute the total wage (at $12 per hour) d

;; of someone who worked for h hours P

(define (wage h) T~
(* 12 h))

The wage function consumes the number of hours some , orked and produces the
weekly wage payment. For simplicity, we assume that all ‘ 'ployees earn the same hourly rate,
namely, $12. A company, however, isn't interested in a nCtlon like wage, which computes the
wage of a single employee. Instead, it wants a fnctlon that computes the wages for all of its
employees, especially if there are a lot ‘of them \'

Call this new functlon,ho 123w gés It consumes a list that represents how many hours the
employees of the compar an( must produce a list of the weekly wages they earned. We
can represent both the 1nput and the butput as Scheme lists of numbers. Since we already have a
data definition for the inputs and outputs, we can immediately start our function development:

;7 hours->wages : list-of-numbers -> list-of-numbers
;; to create a list of weekly wages from a list of weekly hours (alon)
(define (hours->wages alon) ...)

Next we need some examples of inputs and the corresponding outputs:

empty
(cons 28 empty)
(cons 40 (cons 28 empty))

empty
(cons 336 empty)
(cons 480 (cons 336 empty))

The outputs are obtained by calculating the wage for each item on the list to the left.

Given that hours->wages consumes the same class of data as, say, the function sum, and given
that the shape of a function template depends only on the shape of the data definition, we can
reuse the 1ist-of-numbers template:

-127-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define (hours->wages alon)

(cond
[ (empty? alon) ...]
[else ... (first alon) ... (hours->wages (rest alon)) ...]))

Starting with this template, we can turn to the most creative step of function development: the
definition of the function body. Following our recipe, we consider each cond-line in isolation,
starting with the simpler case. First, assume (empty? alon) is true, which means that the input
1S empty. The answer in this case is empty:

(define (hours->wages alon)

(cond
[ (empty? alon) empty]
[else ... (first alon) ... (hours->wages (rest alon)) ...]))

Second, assume that alon was constructed from a number and a list of numbers. The
expressions in the second line remind us of this assumption, and the recipe tells us that we should
state explicitly what they compute:

1. (first alon) yields the first number on alon, which is the first number of hours
worked; and , ||

2. (hours->wages (rest alon)) reminds us that (rest alon) is a list and can be
processed by the very function we are defining. According to the purpose statement, the
expression computes the list of wages for the rest of the list of hours; and we may assume
this relationship in our construction -- even though the functi n is not yet completely
defined.

From here it is a short step to the complete fun tmn definition. Since we already have the list of
wages for all but the first item of alon, the uncu@n must do two things to produce an output for
the entire list of hours:

1. Compute thewe kly wage for- the first number of hours.
2. Construct a list that represents all weekly wages for alon, using the first weekly wage
and the list of weeklywages for (rest alon).

For the first part, we reuse wage. For the second, we cons the two pieces of information together
into one list:

(cons (wage (first alon)) (hours->wages (rest alon)))

And with that, we have a complete function. It is shown in figure 27. To finish the design of the
function, we must still test it.

;7 hours->wages : list-of-numbers -> list-of-numbers
;; to create a list of weekly wages from a list of weekly hours (alon)
(define (hours->wages alon)

(cond
[ (empty? alon) empty]
[else (cons (wage (first alon)) (hours->wages (rest alon)))]))
;; wage : number -> number

;; to compute the total wage (at $12 per hour)
;; of someone who worked for h hours

-128-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define (wage h)
(* 12 h))

Figure 27: Computing weekly wages

Exercise 10.1.1. How do we have to change the function in figure 27 if we want to give
everyone a raise to $14?

Exercise 10.1.2. No employee could possibly work more than 100 hours per week. To protect
the company against fraud, the function should check that no item of the input list of hours-
>wages exceeds 100. If one of them does, the function should immediately signal the error "too

many hours".

How do we have to change the function in figure 27 if we want to perform this basic reality
check?

Exercise 10.1.3.

Develop convertrc. The function converts a list of Fahrenheit measurem‘ehts to a list of Celsius
measurements. -

Exercise 10.1.4. Develop the function convert-euro, w

o, which converts a list of U.S. dollar
amounts into a list of euro amounts. Assume the exe’hahg '

.2 ) euro for each dollar.

Generalize convert-euro to the function cox
and a list of dollar amounts and conveﬁé‘th 1

t which consumes an exchange rate
mto alist of euro amounts.

Exercise 10.1.5. Develop. th""/fu' ctylon} {minate- exp to eliminate expensive toys. The
function consumes a nus alled ua, and a list of toy prices, called lotp, and produces a list
of all those prices in'Totp that ar below or equal to ua. For example,*

(eliminate-exp 1.0 \{cons 2.95 (cons .95 (cons 1.0 (cons 5 empty)))))
;5 expected value:
(cons .95 (cons 1.0 empty))

Exercise 10.1.6. Develop the function name-robot, which consumes a list of toy descriptions
(names) and produces an equivalent list of more accurate descriptions. Specifically, it replaces
all occurrences of ' robot with 'r2d2 and otherwise retains the toy descriptions in the same
order.

Generalize name-robot to the function substitute. The new function consumes two symbols,
called new and 014, and a list of symbols. It produces a new list of symbols by substituting all
occurrences of o1d by new. For example,

(substitute 'Barbie 'doll (cons 'robot (cons 'doll (cons 'dress empty))))
;; expected value:
(cons 'robot (cons 'Barbie (cons 'dress empty)))

-129-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 10.1.7. Develop the function recall to eliminate specific toys from a list. The
function consumes the name of a toy, called ty, and a list of names, called 1on, and produces a
list of names that contains all components of 1on with the exception of ty. For example,

(recall 'robot (cons 'robot (cons 'doll (cons 'dress empty))))
;7 expected value:
(cons 'doll (cons 'dress empty))

Exercise 10.1.8. Develop quadratic-roots, which solves quadratic equations: see
exercises 4.4.4 and 5.1.4. The function accepts the coefficients a, b, and c. The computations it
performs depend on the input:

1. ifa=0, its output is 'degenerate
if b <4 - a - ¢, the quadratic equation has no solution; quadratic-roots produces

'none in this case.
3. ifb*=4-a- ¢, the equation has one solution:

the solution is the answer. o~ |
|

4. ifb*>4 - a- ¢, the equation has two solutions:

and

b ”uﬁF—-¢-a-cr
2.a !

the result is a list (‘)f‘two numbers: the first solution followed by the second solution.

Test the function with the examples from exercises 4.4.4 and 5.1.4. First decide the answer for
each example, then determine it with DrScheme.

Exercise 10.1.9. The cash registers at many grocery stores talk to customers. The register's
computer receives the number of cents that the customer must pay and then builds a list with the
following five items:

the dollar amount;

the symbol 'dol1ar if the dollar amount is 1 and 'dol1lars otherwise;
the symbol 'and;

the cent amount; and

the symbol 'cent if the cent amount is 1 and ' cents otherwise.

Nk L=

Develop the function controller, which consumes a number and produces a list according to
the above description. For example, if the amount is $1.03, then the cash register evaluates
(controller 103):

-130-

X -
FlyHeart.com

TEAM FLY PRESENTS



(controller 103)
;5 expected value:
(cons 1 (cons 'dollar (cons 'and (cons 3 (cons 'cents empty)))))

Hint: Scheme provides the arithmetic operations quotient and remainder, which produce the
quotient and remainder of the expression n/m for integers n and m, respectively.

Once the controller returns the correct list for amounts whose dollar and cent amounts are
between 0 and 20, test the controller with a computer that can speak. Set the teachpack to
sound. ss, which makes two operations available: speak-word and speak-1ist. The first
accepts a symbol or a number, the second a list of symbols and numbers. Both pronounce the
symbols they consume. Evaluate the following expressions (speak-word 1), (speak-list
(cons 1 (cons 'dollar empty))),and(speak—list (cons 'beautiful (cons 'lady
empty))) to understand how the operations operate.

Simple Challenge: The sound teachpack contains only the sounds for the numbers 0 through 20
and 30, 40, 50, 60, 70, 80, and 90. Because of this restriction, this challenge problem works only
on amounts with cents and dollars between 0 to 20. Implement a controller that deals with

arbitrary amounts between 0 and 99.99.

10.2 Lists that Contain Structures

The representation of an inventory as a list of symbols:
a toy store needs to know not only the name of the toy,

We start with the structure and t ’;datéﬁdeﬁnition of a class of inventory records:

(define-struct ir (%ame price))
An inventory-record (short: ir) is a structure:
(make-ir s n)
where s is a symbol and n is a (positive) number.
Most important, we can define a class of lists that represent inventories much more realistically:
An inventory is either
1. empty Or

2. (cons ir inv)
where ir is an inventory record and inv is an inventory.

-131-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



While the shape of the list definition is the same as before, its components are defined in a
separate data definition. Since this is our first such data definition, we should make up some
examples before we proceed.

The simplest example of an inventory is empty. To create a larger inventory, we must create an
inventory record and cons it onto another inventory:

(cons (make-ir 'doll 17.95)
empty)

From here, we can create yet a larger inventory listing:

(cons (make-ir 'robot 22.05)
(cons (make-ir 'doll 17.95)
empty))

Now we can adapt our inventory-processing functions. First look at sum, the function that
consumes an inventory and produces its total value. Here is a restatement of the basic
information about the function:

;7 sum : inventory -> number . “
;; to compute the sum of prices on an-inv S~
(define (sum an-inv) ...)

For our three sample inventories, the function should p d et
and 40.0. \\

(define (sum a
(cond

[else ... (sum (rest an-inv)) ...]))

Following our recipe, the template only reflects the data definition of the input, not that of its
constituents. Therefore the template for sum here is indistinguishable from that in section 9.5.

For the definition of the function body, we consider each cond-line in isolation. First, if (empty?

an-inv) is true, sum is supposed to produce 0. Hence the answer expression in the first cond-line
is obviously o.

(define (sum an-inv)

(cond
[ (empty? an-inv) 0]
[else (+ (ir-price (first an-inv)) (sum (rest an-inv)))]))

Figure 28: Computing the value of an inventory

Second, if (empty? an-inv) is false, in other words, if sum is applied to a constructed inventory,
the recipe requires us to understand the purpose of two expressions:

-132-

X -
FlyHeart.com

TEAM FLY PRESENTS



1. (first an-inv), which extracts the first item of the list; and
2. (sum (rest an-inv)), which extracts the rest of an-inv and then computes its cost
with sum.

To compute the total cost of the entire input an-inv in the second case, we must determine the
cost of the first item. The cost of the first item may be obtained via the selector i r-price, which
extracts the price from an inventory record. Now we just add the cost of the first item and the
cost of the rest of the inventory:

(+ (ir-price (first an-inv))
(sum (rest an-inv)))

The complete function definition is contained in figure 28.

Exercise 10.2.1. Adapt the function contains-do11? so that it consumes inventories instead of
lists of symbols:

;; contains-doll? : inventory -> boolean
;; to determine whether an-inv contains a record for 'doll
(define (contains-doll? an-inv) ...) [

Also adapt the function contains?, which consumes a symbol and an mventory and determines
whether an inventory record with th1s symbol occurs in the inventory:

;; contains? : symbol inventory -> bqﬂlea
;7 to determine whether inventory con

recofd for asymbol
(define (contains? asymbol an- lﬁva\ A

Ifll 1
robot [29.95| st

robot [29.95 ‘\}

Figure 29: A table of toys

-133-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 10.2.2. Provide a data definition and a structure definition for an inventory that
includes pictures with each object. Show how to represent the inventory listing in figure 29.

Develop the function show-picture. The function consumes a symbol, the name of a toy, and
one of the new inventories. It produces the picture of the named toy or fa1se if the desired item
is not in the inventory. Pictures of toys are available on the Web.

Exercise 10.2.3. Develop the function price-of, which consumes the name of a toy and an
inventory and produces the toy's price.

Exercise 10.2.4. A phone directory combines names with phone numbers. Develop a data
definition for phone records and directories. Using this data definition develop the functions

I. whose-number, which determines the name that goes with some given phone number and
phone directory, and

2. phone-number, which determines the phone number that goes with. some given name and
phone directory. ) |

Suppose a business wishes to separate all those items that sell:for a dollar or less from all others.
The goal might be to sell these items in a separate departn 'ent of the store. To perform this split,
the business also needs a function that can extract th se ) s inventory listing, that is, a
function that produces a list of structures.

Let us name the function extract1 because it fééi?ge(s‘,‘a inventory from all those inventory
records whose pr1ce item is less than or equa 00. The function consumes an inventory and

formulate:

;; extractl
;; to create an inventory from an-inv for all
;; those items that cost less than $1

(define (extractl an-inv) ...)

We can reuse our old inventory examples to make examples of extract1's input-output
relationship. Unfortunately, for these three examples it must produce the empty inventory,
because all prices are above one dollar. For a more interesting input-output example, we need an
inventory with more variety:

(cons (make-ir 'dagger .95)
(cons (make-ir 'Barbie 17.95)
(cons (make-ir 'key-chain .55)
(cons (make-ir 'robot 22.05)
empty))))

Out of the four items in this new inventory, two have prices below one dollar. If given to
extractl, we should get the result

(cons (make-ir 'dagger .95)
(cons (make-ir 'key-chain .55)

-134-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



empty) )

The new listing enumerates the items in the same order as the original, but contains only those
items whose prices match our condition.

The contract also implies that the template for extract1 is identical to that of sum, except for a
name change:

(define (extractl an-inv)

(cond
[ (empty? an-inv) ...]
[else ... (first an-inv) ... (extractl (rest an-inv)) ...]))

As always, the difference in outputs between sum and extract1 does not affect the template
derivation.

;; extractl : inventory -> inventory
;7 to create an inventory from an-inv for all
;; those items that cost less than $1
(define (extractl an-inv)
(cond [
[ (empty? an-inv) empty] <
[else (cond T N
[ (<= (ir-price (first an—;nv)) 1. OO)
(cons (first an- 1nv) iextractl (rest ‘an- inv))) ]

[else (extractl (rest an lﬁv)Q\

than one dollar. Second If the ‘\1 ntory is not empty, we first determine what the expressions in
the matching cond-clause compu\ ¢.Since extract1 is the first recursive function to produce a
list of structures, let us look : at our interesting example:

(cons (make-ir 'dagger .95)
(cons (make-ir 'Barbie 17.95)
(cons (make-ir 'key-chain .55)
(cons (make-ir 'robot 22.05)
empty))))

If an-inv stands for this inventory,
(first an-inv) = (make-ir 'dagger .95)

(rest an-inv) = (cons (make-ir 'Barbie 17.95)
(cons (make-ir 'key-chain .55)
(cons (make-ir 'robot 22.05)
empty)))

Assuming extractl works correctly, we also know that

(extractl (rest an-inv)) = (cons (make-ir 'key-chain .55)
empty)

-135-

X -
FlyHeart.com

TEAM FLY PRESENTS



In other words, the recursive application of extract1 produces the appropriate selection from
the rest of an-inv, which is a list with a single inventory record.

To produce an appropriate inventory for all of an-inv, we must decide what to do with the first
item. Its price may be more or less than one dollar, which suggests the following template for the
second answer:

(cond
[ (<= (ir-price (first an-inv)) 1.00) ...]
[else ...])

If the first item's price is one dollar or less, it must be included in the final output and, according
to our example, should be the first item on the output. Translated into Scheme, the output should
be a list whose first item is (first an-inv) and the rest of which is whatever the recursion
produces. If the price is more than one dollar, the item should not be included. That is, the result
should be whatever the recursion produces for the rest of an-inv and nothing else. The
complete definition is displayed in figure 30.

Exercise 10.2.5. Define the function extract>1, which consumes an 1nvent0ry and creates an
inventory from those records whose prices are above one dollar. \ ‘

Exercise 10.2.6. Develop a precise data definition for inventoryl, which z are inventory listings
of one-dollar stores. Using the new data definition, the contract for extractl can be refined:

;7 extractl : inventory -> lnventoryl
(define (extractl an-inv) ...) -

Does the refined contract affect the development of the function above?

nction raise-prices, which consumes an inventory and
prices are raised by 5%.

Exercise 10.2.7. Develo
produces an inventory i

Exercise 10.2.8. Adapt the function recall from exercise 10.1.7 for the new data definition of
inventory. The function consumes the name of a toy ty and an inventory and produces an
inventory that contains all items of the input with the exception of those labeled ty.

Exercise 10.2.9. Adapt the function name-robot from exercise 10.1.6 for the new data
definition of inventory. The function consumes an inventory and produces an inventory with
more accurate names. Specifically, it replaces all occurrences of ' robot with 'r2d3.

Generalize name-robot to the function substitute. The new function consumes two symbols,

called new and o1d, and an inventory. It produces a new inventory by substituting all occurrences
of 01d with new and leaving all others alone.

10.3 _Extended Exercise: Moving Pictures

In sections 6.6 and 7.4, we studied how to move individual shapes. A picture, however, isn't just
a single shape but a whole collection of them. Considering that we have to draw, translate, and
clear pictures, and that we may wish to change a picture or manage several pictures at the same
time, it is best to collect all of the parts of a picture into a single piece of data. Because pictures

-136-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



may consist of a varying number of items, a list representation for pictures naturally suggests
itself.

Exercise 10.3.1. Provide a data definition that describes the class of lists of shapes. The class
of shapes was defined in exercise 7.4.1.

Create a sample list that represents the face of figure 10.3.6 and name it FACE. Its basic
dimensions are gathered in the following table:

shape  position size(s) color
circle  (50,50) 40 red
rectangle (30,20) 5 x5  blue
rectangle (65,20) 5 x5  blue
rectangle (40,75) 20 % 10 red
rectangle (45,35) 10 x 30 blue

The table assumes a canvas of size 300 by 100. ]
‘ \
||

Develop the template fun-for-1losh, which outlines functions that consume a list-of-shapes.

Exercise 10.3.2. Use the template fun-for-losh to develop the functlon draw-losh. It
consumes a 1ist-of-shapes, draws each item on the list, and retums true. Remember to use

them has been moved by delta pixels in’ the X dlrectlon The function has no effect on the
canvas. :

Exercise 10.3.4. Use the template fun-for-losh to develop clear-1osh. The function
consumes a 1ist-of-shapes, erases each item on the list from the canvas, and returns true.

Exercise 10.3.5. Develop the function draw-and-clear-picture. It consumes a picture. Its
effect is to draw the picture, sleep for a while, and to clear the picture.

Exercise 10.3.6. Develop the function move-picture. It consumes a number (delta) and a
picture. It draws the picture, sleeps for a while, clears the picture and then produces a translated
version. The result should be moved by delta pixels.

Test the function with expressions like these:

(start 500 100)

(draw-1losh
(move-picture -5
(move-picture 23
(move-picture 10 FACE))))

(stop)
-137-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



This moves FACE (see exercise 10.3.1) by 10, 23, and -5 pixels in the x direction.

When the function is fully tested, use the teachpack arrow. ss and evaluate the expression:

(start 500 100)

(control-left-right FACE 100 move-picture draw-losh)

The last one creates a graphical user interface that permits users to move the shape Face by
clicking on arrows. The shape then moves in increments of 100 (right) and -100 (left) pixels.
The teachpack also provides arrow controls for other directions. Use them to develop other
moving pictures.

2 Since we don't know yet how to compare two lists with a function, we use the old style of
specifying examples and tests.

> Thanks to Mr. John Clements for drawing these pictures.

-138-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 11

Natural Numbers

The only self-referential data definitions we have seen thus far involved cons and lists of
arbitrary length. We needed such data definitions because the classes of lists that we wanted to
process were of arbitrary size. Natural numbers are another class of data whose elements are of
arbitrary size; after all, there is no limit on how large a natural number can be, and, at least in
principle, a function should be able to process them all.

In this section, we study how to describe natural numbers with self-referential data definitions
and how to develop functions that process natural numbers in a systematic fashion. Since such
functions come in many flavors, we study several different flavors of definitions.

11.1 Defining Natural Numbers f
o~
People normally introduce natural numbers via enumeration: ¢, 1, 2, etc.® The abbreviation
“etc." at the end says that the series continues in this manner. Mathematlclans and mathematics
teachers often use dots for the same purpose. For us, ho ver, nelther the *“etc." nor the dots is
good enough, if we wish to design functlons on natural numbers systematlcally So, the question
is what it means to write down "etc.," or put;;d'fferen r, what a complete, self-contained
description of the natural numbers is. ‘

The only way to remove the mformal etc “from the enumeration is to describe the collection of
numbers with a self-referential desc >ripti n Here is a first attempt:

0 is a natural number.
If n is a natural number, ther 1 one more than n is one t0o0.

While this description is still not quite rigorous, it is a good starting point for a Scheme-style
data description:

A natural-number 1s either

1. oor
2. (addl n) if nis a natural number.

The operation add1 adds 1 to a natural number. Of course, we could use (+ ... 1) butadd1l
stands out and signals " “natural number," as opposed to arbitrary number, to the reader of a data
definition and a function.

Although we are familiar with natural numbers from school, it is instructive to construct
examples from the data definition. Clearly,

0

-139-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



is the first natural number, so

(addl 0)

is the next one. From here, it is easy to see the pattern:

(addl (addl 0))
(addl (addl (addl 0)))
(addl (addl (addl (addl 0))))

The examples should remind us of the lists construction process. We built lists by starting with
empty and by constructing on more items. Now we build natural natural numbers by starting
with 0 and by adding on 1. In addition, natural numbers come with century-old abbreviations.
For example, (add1 0) is abbreviated as 1, (addl (addl 0)) as 2, and so on.

A function on natural numbers must extract the number that went into the construction of a
positive natural number just like a function on lists must extract the list that went into a
constructed list. The operation that performs this "“extraction" is called sub1. It satisfies the law

(subl (addl n)) = n A

just as the rest operation satisfies the law

(rest (cons a-value a-list)) = a-list

natural numbers.

11.2 Processing N,aztiiifi'gll imbers of Arbitrary Size

Let us develop the function he consumes a natural number n and produces a list of n
copies of 'hello. We can write the contract for this function:

;; hellos : N -> list—of—symbols
;; to create a list of n copies of 'hello
(define (hellos n) ...)

And we can make up examples:

(hellos 0)

;7 expected value:

empty

(hellos 2)

;; expected value:

(cons 'hello (cons 'hello empty))

The design of a template for hel1os follows the design recipe for self-referential data definitions.
We immediately see that hellos is a conditional function, that its cond-expression has two
clauses, and that the first clause must distinguish 0 from other possible inputs:

(define (hellos n)
(cond

-140-

X -
FlyHeart.com

TEAM FLY PRESENTS



[ (zero? n) ...]
[else ...]))

Furthermore, the data definition says that 0 is an atomic value, and every other natural number is
a compound value that *"contains" the predecessor to which 1 was added. Hence, if n is not 0, we
subtract 1 from n. The result is also a natural number, so according to the design recipe we wrap

the expression with (hellos ...):

(define (hellos n)
(cond
[(zero? n) ...]
[else ... (hellos (subl n)) ... 1))

Now we have exploited every hint in the data definition and are ready to proceed with the
definition.

Assume (zero? n) evaluates to true. Then the answer must be empty, as the examples illustrate.
So assume the input is greater than 0. For concreteness, let us say it is 2. According to the
suggestion in the template, hellos should use (hellos 1) to compute a part of the answer. The
purpose statement specifies that (hellos 1) produces (cons 'hello em‘f'p:\ty) , a list with one
'hello. In general, (hellos (subl n)) produces a list that contains n - 1 occurrences of
'hello. Clearly, to produce a list with n occurrences, we must cons another 'hello onto this list:

(define (hellos n)
(cond
[ (zero? n) empty] )
[else (cons 'hello (hellos <(subl
RN :
As usual, the final definition is just the tem

Let's test hellos with sonie valuations:

(hellos 0)

= (cond v
[ (zero? 0) empty]
[else (cons 'hello (hellos (subl 0)))])

= (cond
[true empty]
[else (cons 'hello (hellos (subl 0)))1)

empty
It confirms that he110s works properly for the first example.

Here is another example:

(hellos 1)

(cond
[ (zero? 1) empty]
[else (cons 'hello (hellos (subl 1)))])

(cond
-141-

X -
FlyHeart.com

TEAM FLY PRESENTS



[false empty]
[else (cons 'hello (hellos (subl 1)))1])

(cons 'hello (hellos (subl 1)))

= (cons 'hello (hellos 0))

(cons 'hello empty)

For the last step in the calculation, we can exploit that we already know that (hellos 0)
evaluates to empty and replace the (underlined) expression with its result.

The last hand-evaluation shows that the function works for the second example:

(hellos 2)

(cond
[ (zero? 2) empty]
[else (cons 'hello (hellos (subl 2)))1])

= (cond ’
[false empty] (
[else (cons 'hello (hellos (subl 2)))]) P

= (cons 'hello (hellos (subl 2)))

= (cons 'hello (hellos 1))

= (cons 'hello (cons 'hello empty

We can again exploit what we know ab/&
evaluation. ‘

Exercise 11.2.1. Genel

symbol and produces a list wit curfences of the symbol.

Exercise 11.2.2. Develop the function tabulate-f, which tabulates the values of

;5 £ ¢ number -> number
(define (f x)
(+ (* 3 (* x x))
(+ (* -6 x)
-1)))

for some natural numbers. Specifically, it consumes a natural number n and produces a list of n
posns. The first one combines n with (£ n), the second one n-1 with (f n-1), etc.

Exercise 11.2.3. Develop apply-n. The function consumes a natural number, n. It applies the
function move from exercise 10.3.6 n times to FACE, the list of shapes from exercise 10.3.1. Each
application should translate the shape by one pixel. The purpose of the function is to simulate a
continuously moving shape on a canvas, the last missing piece of the extended exercise 10.3.

Exercise 11.2.4. Lists may contain lists that contain lists and so on. Here is a data definition
that takes this idea to an extreme:

-142-

X -
FlyHeart.com

TEAM FLY PRESENTS



A deep-list is either

1. s where s is some symbol or
2. (cons dl empty), where dl is a deep list.

Develop the function depth, which consumes a deep list and determines how many times cons
was used to construct it.

Develop the function make-deep, which consumes a symbol s and a natural number and
produces a deep list containing s and constructed with n conses.

11.3 Extended Exercise: Creating Lists, Testing Functions

We often encounter situations where we would like to create lists of data that involve numbers.
For example, we may wish to create large lists of numbers to test a function like extract1 in
section 10.2 on large lists instead of hand-coded small ones. Sometimes we would like to
visualize randomly picked data. We can create such functions using recursion on natural
numbers and a random number generator. p
N

Exercise 11.3.1. Scheme provides the operation random. It consurﬁ'é‘sja natural number n
greater than 1, and produces a random integer between 0 and o RN

;; random : N -> N )
;; to compute a natural number between
(define (random n) ...)

/\ \ ) . .
duce two distinct results.

Two successive uses of (random n) may pro

Now consider the following definition

;; random-n-ni eger -> integer
;77 Assume: n < m \>
(define (random-n-m n m)

(+ (random (- m n)) n))

Formulate a succinct and precise purpose statement for random-n-m. Use a number line with an
interval to explain the result of (random n). Use a symbolic evaluation to support your
explanation.

Exercise 11.3.2. Develop the function tie-dyed. It consumes a natural number and produces a
list of numbers. Each of these should be between 20 and 120. Use tie-dyed to test draw-
circles from exercise 9.5.8.

Exercise 11.3.3. Develop the function create-temps. It consumes a natural number n and two
integers, called 1ow and high. It produces a list of n integers that are between 1ow and high.

Use create-temps to test check-range from exercise 9.5.4.

-143-

X -
FlyHeart.com

TEAM FLY PRESENTS



Finally, discuss the following questions. Can we simply feed the result of create-temps into
check-range or do we need to know the list that create-temps produced? Are there values for
low and high such that we don't need to know the result of create-temps and yet we can
predict the result of the test? Which function tests which? What does this tell us about testing
with automatically generated test data?

Exercise 11.3.4. Develop the function create-prices, which consumes a natural number and
produces a list with a corresponding of prices between $.10 and $10.00 with increments of a
dime. Use create-prices to test dollar-store? from exercise 9.5.3.

Hint: How many dimes are there between $.10 and $10.00?

Exercise 11.3.5. Develop a program that visualizes a student riot. In preparation of a student
riot, a small group of students meets to make paint-filled balloons. The typical riot uses RED only.
Then, on the evening of the riot, the students enter a university's progressive theater with the
balloons and throw them all over the seats.

The program's only input should be a natural number, which represents the number of balloons
thrown. The visualization should use a canvas that contains a black grid apd the positions of the
balls: o~ |

Assume a random distribution ’
a seat. Configure the program so the “change of one variable definition changes the number of
columns in the grid and a change to another changes the number of rows.

Hint: Develop auxiliary functions that draw some given number of lines in the vertical and the
horizontal direction.

11.4 Alternative Data Definitions for Natural Numbers

Using the above, standard data definition for natural numbers makes it easy to develop all kinds
of functions on numbers. Consider, for example, a function that multiplies the first n numbers.
Put differently, it consumes a natural number n and multiplies all numbers between 0 (exclusive)
and n (inclusive). The function is called factorial and has the mathematical notation !. Its
contract is easy to formulate:

;;0 ! ¢« N->N
;; to compute n . (n = 1) . . . 2 . 1
(define (! n) ...)

It consumes a natural number and produces one.

-144-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Specifying its input-output relationship is a bit more tricky. We know, of course, what the
product of 1, 2, and 3 is, so we should have

(= (! 3)
6)
and, similarly,
(= (! 10)
3628800)

The real question is what to do with the input 0. According to the informal description of the

task, ! is supposed to produce the product of all numbers between 0 (exclusive) and n (inclusive),
the argument. Since n is 0, this request is rather strange because there are no numbers between 0
(exclusive) and 0 (inclusive). We solve the problem by following mathematical convention and
set that (! 0) evaluates to 1.

From here, the rest is straightforward. The template for ! is clearly that of a natural number
processing function:

(define (! n)
(cond 1
[ (zero? n) ...] ||
[else ... (! (subl n)) ...1)) <Z |

The answer in the first cond-clause is given: 1. In the sgcoﬁd 6‘1@5@, the recursion produces the
product of the first n - 1 numbers. To get the product: ﬁrst numbers, we just need to
multiply the (value of the) recursion by n. Figure 31\co the complete definition of !,

Exercise 11.4.1. Determine the Value{Of ‘and with DrScheme. Also test ! with 10,

100, and 1000.

Note: The results of the “expres ons are large numbers, well beyond the native capacities of

many other programmin

Now suppose we wish to design the function product-£rom-20, which computes the product
from 20 (exclusive) to some number n (inclusive) that is greater or equal to 20. We have several
choices here. First, we could define a function that computes (! n) and (! 20) and divides the
former by the latter. A simple mathematical argument shows that this approach indeed yields the
product of all numbers between 20 (exclusive) and n (inclusive):

nefn—1)....21.20....1 _ 2.1 _
20....1 _“'f“_lj'--"m'm—n-(n—lj-,,.-ﬂl.

Exercise 11.4.2. Use the idea to define product, a function that consumes two natural numbers,
n and m, with m > n, and that produces the product of the numbers between n (exclusive) and m
(inclusive).

Second, we can follow our design recipe, starting with a precise characterization of the function's
input. Obviously, the inputs belong to the natural numbers, but we know more than that. It
belongs to the following collection of numbers: 20, 21, 22, .. .. By now we know how to
describe such a set precisely with a data definition:

-145-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



A natural number [>= 20] is either

1. 200r
2. (addl n) if nis a natural number [>= 20].

Notation: In contracts, we use N [>= 20] instead of ““natural numbers [>= 207]."

Using the new data definition, we can formulate a contract for product-from-20:
;; product-from-20: N [>= 20] -> N

;; to compute n - (n - 1) . e . 21 . 1
(define (product-from-20 n-above-20) ...)

Here is a first example for product-from-20's input-output specification:

(= (product-from-20 21)
21)

Since the function multiplies all numbers between 20 (exclusively) and its input, (product-
from-20 21) must produce 21, which is the only number in the interval. Similarly,

(= (product-from-20 22)
462)

(= (product-from-20 20)
1)

The template for product-fr
natural number-processing

(define (product=
(cond N\

[ (= n-above-20 20) ...]
[else ... (product-from-20 (subl n-above-20)) ...]))

The input n-above-20 is either 20 or larger. If it is 20, it does not have any components
according to the data definition. Otherwise, it is the result of adding 1 to a natural number [>=
2071, and we can recover this *“component" by subtracting 1. The value of this selector expression
belongs to the same class of data as the input and is thus a candidate for natural recursion.

Completing the template is equally straightforward. As specified, the result of (product-from-
20 20) is 1, which determines the answer for the first cond-clause. Otherwise, (product-from-
20 (subl n-above-20)) already produces the product of all the numbers between 20
(exclusive) and n-above-20 - 1. The only number not included in this range is n-above-20.
Hence (* n-above-20 (product-from-20 (subl n-above-20))) is the correct answer in the
second clause. Figure 31 contains the complete definition of product-from-20.

Exercise 11.4.3. Develop product-from-minus-11. The function consumes an integer n
greater or equal to -11 and produces the product of all the integers between -11 (exclusive) and
n (inclusive).

-146-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 11.4.4. In exercise 11.2.2, we developed a function that tabulates some mathematical
function £ for an interval of the shape (0,#].

Develop the function tabulate-£20, which tabulates the values of £ for natural numbers greater
than 20. Specifically, the function consumes a natural number n greater or equal to 20 and
produces a list of posns, each of which has the shape (make-posn n (£ n)) for some n
between 20 (exclusive) and n (inclusive).

;; ! ¢ N ->N
;; to compute n - (n = 1) . ... . 2 . 1
(define (! n)

(cond

[ (zero? n) 1]
(!

[else (* n (subl n)))1))

;; product-from-20: N [>= 20] -> N

;; to compute n - (n - 1) o .. o 21 o 1
(define (product-from-20 n-above-20)
(cond

[ (= n-above-20 20) 1]
[else (* n-above-20 (product-from-20 (subl n—a@ove—ZO)))]))
\

;; product: N[limit] N[>= limit] -> N 41:_\‘

;; to compute n - (n - 1) ALimit %KIj\ 1
(define (product limit n) O
(cond

[(=n limit) 1]

A comparison of ! and pr “rom-20 suggests the natural question of how to design a
function that multiplies a// naﬁl;\ 1l nu;ﬁ'b“éﬂrs in some range. Roughly speaking, product is like
product-from-20 except hat the limit is not a part of the function definition. Instead, it is
another input, which suggests the following contract:

;; product: NN -> N
H to compute n - (n - 1) . e . (1imit + 1) . 1
(define (product limit n) ...)

The intention is that product, like product-from-20, computes the product from 1imit
(exclusive) to some number n (inclusive) that is greater or equal to 1imit.

Unfortunately, product's contract, in contrast with product-from-20's, is rather imprecise. In
particular, it does not describe the collection of numbers that product consumes as the second
input. Given its first input, 1imit, we know that the second input belongs to 1imit, (addl
limit), (addl (addl limit)), etc. While it is easy to enumerate the possible second inputs, it
also shows that the description of the collection depends on the first input -- an unusal situation
that we have not encountered before.

Still, if we assume limit is some number, the data description for the second input is nearly
obvious:

-147-

X -
FlyHeart.com

TEAM FLY PRESENTS



Let 1imit be a natural number. A natural number [>= 1imit] (N[>=1imit]) is either

1. limit or
2. (addl n) if nis a natural number [>= limit].

In other words, the data definition is like that for natural numbers [>= 1imit] with 20 replaced
by a variable 1imit. Of course, in high school, we refer to N[>=0] as the natural numbers, and
N[>=1] as the positive integers.

With this new data definition, we specify the contract for product as follows:

;; product: N[limit] N [>= limit] -> N
H to compute n - (n = 1) . e . (1imit + 1) . 1
(define (product limit n) ...)

That is, we name the first input, a natural number, with the notation [1imit] and specify the
second input using the name for the first one.

The rest of the program development is straightforward. It is basically the same as that for
product-from-20 with 20 replaced by 1imit throughout. The only modlﬁcatlon concerns the
natural recusion in the function template. Since the function consumes a lll‘mlt andan [>=

limit], the template must contain an application of product €0 1imit and (subl n):

(define (product limit n)
(cond
[(=n limit) ...] PN
[else ... (product limi}\(sdb

some natural number or natural n H,,,,bery [>= 20] down to 0 or 20 (exclusive), respectively.

Develop the function tabulate-f-1im, which tabulates the values of £ in an analogous manner
from some natural number n down to some other natural number 1imit.

Exercise 11.4.6. In exercises 11.2.2, 11.4.4, and 11.4.5, we developed functions that tabulate
the mathematical function £ in various ranges. In both cases, the final function produced a list of
posns that was ordered in descending order. That is, an expression like (tabulate-f 3) yields
the list

(cons (make-posn 3 2.4)
(cons (make-posn 2 3.4)
(cons (make-posn 1 3.6)
(cons (make-posn 0 3.0)
empty))))

If we prefer a list of posns in ascending order, we must look at a different data collection, natural
numbers up to a certain point in the chain:

A natural number [<= 20] (N[<=20]) is either

-148-

X -
FlyHeart.com

TEAM FLY PRESENTS



1. 200r
2. (subl n) if nis a natural number (<= 20].

Of course, in high school, we refer to N[<=-1] as the negative integers.

Develop the function

;; tabulate-f-up-to-20 : N [<= 20] -> N
(define (tabulate-f-up-to-20 n-below-20) ...)

which tabulates the values of £ for natural numbers less than 20. Specifically, it consumes a
natural number n less than or equal to 20 and produces a list of posns, each of which has the
shape (make-posn n (f n)) for some n between 0 and n (inclusively).

Exercise 11.4.7. Develop the function is-not-divisible-by<=i. It consumes a natural
number [>= 1], i, and a natural number m, with i < m. If m is not divisible by any number
between 1 (exclusive) and i (inclusive), the function produces t rue; otherwise, its output is
false.

I \
Use is-not-divisible-by<=i to define prime?, which consumes a natqral number and
determines whether or not it is prime. :

11.5 More on the Nature of Naty/u\r;a”" N,urilb,ers N

The natural numbers are a small subset of Schéme S ers, not all of them. Hence the function
template above cannot be used for processing rb1trary numbers in particular, inexact numbers.
Still, the template is a good starting poin fi ons whose definitions involve both natural
numbers and other Scheme numn 'bers To'il 'strate this point, let us design the function add-to-
pi, which consumes a natu iber n nd produces n + 3.14 without using +.

Following the desigﬁ re(;ip‘“ we start With

;; add-to-pi : N —Sﬂnumber
;; to compute n + 3.14 without using +
(define (add-to-pi n) ...)

Another easy step is to determine the output for a few sample inputs:

(
(
(

(add-to-pi 0) 3.14)
(add-to-pi 2) 5.14)
(add-to-pi 6) 9.14)

The difference between hel1os's contract (see exercise 11.2.1) and that of add-to-pi is the
output, but as we have seen this does not affect the template design. We obtain the template for
add-to-pi by renaming hellos appropriately:

(define (add-to-pi n)
(cond
[(zero? n) ...]
[else ... (add-to-pi (subl n)) ... 1)))

-149-

X -
FlyHeart.com

TEAM FLY PRESENTS



In combination with the examples, the template immediately suggests how to complete the
function. If the input is 0, add-to-pi's answer is 3.14. Otherwise, (add-to-pi (subl n))
produces (- n 1) + 3.14; since the correct answer is 1 more than this value, the answer
expression in the second cond-line is (addl (add-to-pi (subl n))).Figure 32 contains the
complete function definition.

Exercise 11.5.1. Define add, which consumes two natural numbers, n and x, and produces n +
% without using Scheme's +.

Exercise 11.5.2. Develop the function multiply-by-pi, which consumes a natural number and
multiplies it by 3. 14 without using *. For example,

(= (multiply-by-pi 0) 0)
(= (multiply-by-pi 2) 6.28)
(= (multiply-by-pi 3) 9.42)

Define multiply, which consumes two natural numbers, n and x, and produces n * x without
using Scheme's *. Eliminate + from these definitions, too.

Hint: Recall that multipliplying x by n means adding x to itself n times.

Exercise 11.5.3. Develop the function exponent, which c

sumes a natural number n and a
number x and computes ‘

Eliminate * from the definition, too. (.

’ by n‘\means mu"hip]ying x with itself n times.

Exercise 11.5.4. Deep lists (see

| | reise 1 1.2.4) are another representation for natural numbers.
Show how to represent 0, 3,and 8.

Develop the function addpr, which consumes two deep lists, representing the natural numbers n
and m, and produces a deep list representing n + m.

;; add-to-pi : N -> number
;; to compute n + 3.14 without using +
(define (add-to-pi n)
(cond
[ (zero? n) 3.14]
[else (addl (add-to-pi (subl n)))1))

Figure 32: Adding a natural number to pi

# Tt is important to start counting at 0 so that we can use the natural numbers for counting the
number of items on a list or the members of a family tree.

3 For that, we need to defer to a course on mathematical sets.

-150-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 12

Composing Functions, Revisited Again

In section 3 we said that programs were collections of function definitions and possibly some
variable definitions, too. To guide the division of labor among functions, we also introduced a
rough guideline:

Formulate auxiliary function definitions for every dependency between quantities in the problem
statement.

So far the guideline has been reasonably effective, but it is now time to take a second look at it
and to formulate some additional guidance concerning auxiliary functions.

In the first subsection, we refine our original guideline concerning auxiliary programs. The
suggestions mostly put into words the experiences that we made with the exercises. The second
and third one illustrate two of the ideas in more depth; the last one is an e)“;tfended exercise.

12.1 Designing Complex Program

When we develop a program, we may hope to 1mplement ith a'single function definition but
we should always be prepared to write auxiliary functions. In particular, if the problem statement
mentions several dependencies, it is natural to xpress ich of them as a function. Others who
read the problem statement and the progra Llow our reasoning more easily that way. The

movie-theater example in se example for this style of development.

Otherwise, we should follow the esign rempe and start with a thorough analysis of the input and
output data. Using the data nalysis we should design a template and attempt to refine the
template into a complete function definition. Turning a template into a complete function
definition means combining the values of the template's subexpressions into the final answer. As
we do so, we might encounter several situations:

1. If the formulation of an answer requires a case analysis of the available values, use a
cond-expression.

2. If a computation requires knowledge of a particular domain of application, for example,
drawing on (computer) canvases, accounting, music, or science, use an auxiliary function.

3. If a computation must process a list, a natural number, or some other piece of data of
arbitrary size, use an auxiliary function.

4. If the natural formulation of the function isn't quite what we want, it is most likely a
generalization of our target. In this case, the main function is a short definition that defers
the computation to the generalized auxiliary program.

The last two criteria are situations that we haven't discussed yet. The following two subsections
illustrate them with examples.

After we determine the need for an auxiliary function, we should add a contract, a header, and a
purpose statement to a wisu List of functions.*
-151-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Guideline on Wish Lists

Maintain a list of functions that must be developed to complete a program. Develop each
function according to a design recipe.

Before we put a function on the wish list, we must check whether something like the function
already exists or is already on the wish list. Scheme provides many primitive operations and
functions, and so do other languages. We should find out as much as possible about our working
language, though only when we settle on one. For beginners, a superficial knowledge of a
language is fine.

If we follow these guidelines, we interleave the development of one function with that of others.
As we finish a function that does not depend on anything on our wish list, we can test it. Once
we have tested such basic functions, we can work our way backwards and test other functions
until we have finished the wish list. By testing each function rigorously before we test those that
depend on it, we greatly reduce the effort of searching for logical mistakes.

12.2 Recursive Auxiliary Functions

\ |
People need to sort things all the time. Investment advisors sort portfohos by the profit each

holding generates. Doctors sort lists of transplant patlents Mall programs sort messages. More
generally, sorting lists of values by some criteria is a task ny programs need to perform.

Here we study how to sort a list of numbers not because 1mportant for many programming
tasks, but also because it provides a good case study of th demgn of auxiliary programs. A
sorting function consumes a list and produces o Indeed, the two lists contain the same
numbers, though the output hst contarns*t ifferent order. This is the essence of the
contract and purpose statement:

;; sort : li§t¥0 -numk 5 list-of-numbers
;; to create a sorted l1ist of numbers from all the numbers in alon
(define (sort alon)\ ...

Here is one example per clause in the data definition:

(sort empty)

;5 expected value:

empty

(sort (cons 1297.04 (cons 20000.00 (cons -505.25 empty))))
;7 expected value:

(cons 20000.00 (cons 1297.04 (cons -505.25 empty)))

The answer for the input empty is empty, because empty contains the same items (none) and in
sorted order.

Next we must translate the data definition into a function template. Again, we have dealt with
lists of numbers before, so this step is easy:

(define (sort alon)
(cond
[ (empty? alon) ...]

-152-

X -
FlyHeart.com

TEAM FLY PRESENTS



[else ... (first alon) ... (sort (rest alon)) ...]))

Using this template, we can finally turn to the interesting part of the program development. We
consider each case of the cond-expression separately, starting with the simple case. If sort's
input is empty, then the answer is empty, as specified by the example. So let's assume that the
input is not empty. That is, let's deal with the second cond-clause. It contains two expressions
and, following the design recipe, we must understand what they compute:

1. (first alon) extracts the first number from the input;
2. (sort (rest alon)) produces a sorted version of (rest alon), according to the
purpose statement of the function.

Putting together these two values means inserting the first number into its appropriate spot in the
sorted rest of the list.

Let's look at the second example in this context. When sort consumes (cons 1297.04 (cons
20000.00 (cons -505.25 empty))), then

1. (first alon) evaluatesto 1297.04, 1
2. (rest alon) 1S (cons 20000.00 (cons -505.25 empty). anq
3 (sort (rest alon))produces(cons 20000.00 (c hs —505 25Rempty)y

To produce the desired answer, we must insert 1297 . Q;4"'betw en‘\‘the two numbers of the last list.
More generally, the answer in the second cond- llne' ust be an expri sion that inserts (first
alon) In its proper place into the sorted list (sort |(rest alon)).

PN

Inserting a number into a sorted list isn't a SJmple task We may have to search through the entire

sorted list and creates a Sorted hs /,,éﬁi/both. Let us call this function insert and let us

formulate a wish-list entry:

;; insert : number list-of-numbers -> list-of-numbers

;; to create a list of numbers from n and the numbers on alon
;; that is sorted in descending order; alon is already sorted
(define (insert n alon) ...)

Using insert, it is easy to complete the definition of sort:

(define (sort alon)

(cond
[ (empty? alon) empty]
[else (insert (first alon) (sort (rest alon)))]))

The answer in the second line says that in order to produce the final result, sort extracts the first
item of the non-empty list, computes the sorted version of the rest of the list, and inserts the
former into the latter at its appropriate place.

Of course, we are not really finished until we have developed insert. We already have a
contract, a header, and a purpose statement. Next we need to make up function examples. Since

-153-

X -
FlyHeart.com

TEAM FLY PRESENTS



the first input of insert is atomic, let's make up examples based on the data definition for lists.
That is, we first consider what insert should produce when given a number and empty.
According to insert's purpose statement, the output must be a list, it must contain all numbers
from the second input, and it must contain the first argument. This suggests the following:

(insert 5 empty)
;; expected value:
(cons 5 empty)

Instead of 5, we could have used any number.

The second example must use a non-empty list, but then, the idea for insert was suggested by
just such an example when we studied how sort should deal with non-empty lists. Specifically,
we said that sort had to insert 1297.04 into (cons 20000.00 (cons -505.25 empty)) atits
proper place:

(insert 1297.04 (cons 20000.00 (cons -505.25 empty)))
;; expected value:
(cons 20000.00 (cons 1297.04 (cons -505.25 empty)))

In contrast to sort, the function insert consumes two inputs. But we lgn(‘pw that the first one is a
number and atomic. We can therefore focus on the second argument, which is a list of numbers
and which suggests that we use the list-processing template one more time:

(define (insert n alon)
(cond
[ (empty? alon) ...]

[else ... (first aloq}\ (rest alon)) ...1))

The only difference between ‘one for sort is that this one needs to take into
account the additional argu

To fill the gaps in the tem late of insert, we again proceed on a case-by-case basis. The first
case concerns the empty list. According to the purpose statement, insert must now construct a
list with one number: n. Hence the answer in the first case is (cons n empty).

The second case is more complicated than that. When alon is not empty,

1. (first alon) is the first number on alon, and
2. (insert n (rest alon)) produces a sorted list consisting of n and all numbers on
(rest alon).

The problem is how to combine these pieces of data to get the answer. Let us consider an
example:

(insert 7 (cons 6 (cons 5 (cons 4 empty))))

Here n is 7 and larger than any of the numbers in the second input. Hence it suffices if we just
cons 7 0onto (cons 6 (cons 5 (cons 4 empty))).In contrast, when the application is
something like

(insert 3 (cons 6 (cons 2 (cons 1 (cons -1 empty)))))
-154-

X -
FlyHeart.com

TEAM FLY PRESENTS



n must indeed be inserted into the rest of the list. More concretely,

1. (first alon) is 6
2. (insert n (rest alon)) iS (cons 3 (cons 2 (cons 1 (cons -1 empty)))).

By adding 6 onto this last list with cons, we get the desired answer.

Here is how we generalize from these examples. The problem requires a further case distinction.
If n is larger than (or equal to) (first alon), all the items in alon are smaller than n; after all,
alon is already sorted. The resultis (cons n alon) for this case. If, however, n is smaller than
(first alon), then we have not yet found the proper place to insert n into alon. We do know
that the first item of the result must be the (first alon) and that n must be inserted into (rest
alon). The final result in this case is

(cons (first alon) (insert n (rest alon)))
because this list contains n and all items of alon in sorted order -- which is what we need.

The translation of this discussion into Scheme requires the formulation of/a ra conditional
expression that distinguishes between the two possible cases: ‘ J

(cond
[(>> n (first alon)) ...]
[(< n (first alon)) ...1)

N

From here, we just need to put the proper answer expfesm 1S into the two cond-clauses.
Figure 33 contains the complete deﬁmt{ons of se t and sort.

;; sort : list-of- numbers = ist-of-numbers (sorted)
77 to create a_ llgt @f/ﬁumb s with the same numbers as
;; alon sorted«ln desc nding order

(define (sort aion g

(cond \‘
[ (empty? alon)\.empty]
[ (cons? alon) (insert (first alon) (sort (rest alon)))]))
;5 d1nsert : number list-of-numbers (sorted) -> list-of-numbers (sorted)

;; to create a list of numbers from n and the numbers on
;; alon that is sorted in descending order; alon is sorted
(define (insert n alon)

(cond
[ (empty? alon) (cons n empty) ]
[else (cond
[(>> n (first alon)) (cons n alon)]
[(< n (first alon)) (cons (first alon) (insert n (rest
alon)))1)1))

Figure 33: Sorting lists of numbers

Terminology: This particular program for sorting is known as iNserTiON sort in the programming
literature.

-155-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 12.2.1. Develop a program that sorts lists of mail messages by date. Mail structures
are defined as follows:

(define-struct mail (from date message))

A mail-message is a structure:

(make-mail name n s)
where name is a string, n is a number, and s is a string.

Also develop a program that sorts lists of mail messages by name. To compare two strings
alphabetically, use the string<? primitive.

Exercise 12.2.2. Here is the function search:

;; search : number list-of-numbers -> boolean
(define (search n alon)

(cond
[ (empty? alon) false]
[else (or (= (first alon) n) (search n (rest alon)))f))

‘ |
It determines whether some number occurs in a list of numbers. The function may have to
traverse the entire list to find out that the number of interest isn't contained in the list.

hether a number occurs in a sorted list

Develop the function search-sorted, which deter
ct that the list is sorted.

of numbers. The function must take advantage of th

Terminology: The function search-sorted conducts a LINEAR SEARCH.

12.3 Generalizing Problems, Generalizing Functions

Consider the problem of “dr‘fawing\a'polygon, that is, a geometric shape with an arbitrary number
of corners.”” A natural representation for a polygon is a list of posn structures:

A list-of-posns is either

1. the empty list, empty, or
2. (cons p lop) where p is a posn structure and 1op is a list of posns.

Each posn represents one corner of the polygon. For example,

(cons (make-posn 10 10)
(cons (make-posn 60 60)
(cons (make-posn 10 60)
empty)))

represents a triangle. The question is what empty means as a polygon. The answer is that empty
does not represent a polygon and therefore shouldn't be included in the class of polygon
representations. A polygon should always have at least one corner, and the lists that represent
polygons should always contain at least one posn. This suggest the following data definition:

-156-

X -
FlyHeart.com

TEAM FLY PRESENTS



A polygon is either

1 (cons p empty) where o) isa posn, Or
2. (cons p lop) where p is a posn structure and 1op is a polygon.

In short, a discussion of how the chosen set of data (lists of posns) represents the intended
information (geometric polygons) reveals that our choice was inadequate. Revising the data
definition brings us closer to our intentions and makes it easier to design the program.

Because our drawing primitives always produce t rue (if anything), it is natural to suggest the
following contract and purpose statement:

;; draw-polygon : polygon -> true
;; to draw the polygon specified by a-poly
(define (draw-polygon a-poly) ...)

In other words, the function draws the lines between the corners and, if all primitive drawing
steps work out, it produces true. For example, the above list of posns should produce a triangle.

Although the data definition is not just a variant on our well-worn hst theme the template is
close to that of a list-processing function: | J

;; draw-polygon : polygon -> true
;; to draw the polygon specified by a- p
(define (draw-polygon a-poly) ‘
(cond
[ (empty? (rest a-poly))
[else ... (first a-poly)
(second a- poly)

Given that both clauses in lata definition use cons, the first condition must inspect the rest of
the list, which is empty for the first case and non-empty for the second one. Furthermore, in the
first clause, we can add (first a-poly); and in the second case, we not only have the first item
on the list but the second one, too. After all, polygons generated according to the second clause
consist of at least two posns.

Now we can replace the **. . ." in the template to obtain a complete function definition. For the
first clause, the answer must be true, because we don't have two posns that we could connect to
form a line. For the second clause, we have two posns, we can draw a line between them, and we
know that (draw-polygon (rest a-poly)) draws all the remaining lines. Put differently, we
can write

(draw-solid-line (first a-poly) (second a-poly))

in the second clause because we know that a-poly has a second item. Both (draw-solid-
line ...) and (draw-poly ...) produce true if everything goes fine. By combining the two
expressions with and, draw-poly draws all lines.

Here is the complete function definition:

(define (draw-polygon a-poly)
-157-

X -
FlyHeart.com

TEAM FLY PRESENTS



(cond
[ (empty? (rest a-poly)) true]
[else (and (draw-solid-line (first a-poly) (second a-poly))
(draw-polygon (rest a-poly)))]))

Unfortunately, testing it with our triangle example immediately reveals a flaw. Instead of
drawing a polygon with three sides, the function draws only an open curve, connecting all the
corners but not closing the curve:

Mathematically put, we have defined a more general function than the one we wanted. The
function we defined should be called **connect-the-dots" and not draw- -polygon.

To get from the more general function to what we want, we need to. ﬁgure out some way to
connect the last dot to the first one. There are several ways to accomphsh thls goal, but all of
them mean that we define the main function in terms of the function we just defined or
something like it. In other words, we define one auxiliar 'fun thI’l in terms of a more general
one. ‘ :

One way to define the new function is to add ~
have this new list drawn. A symmetrlc metho
polygon. A third alternative is to-
the last posn to the first one. Here we di
other two. \

uss the second altematlve the exercises cover the

To add the last item of a-poly at the beginning, we need something like

(cons (last a-poly) a-poly)

where last is some auxiliary function that extracts the last item from a non-empty list. Indeed,
this expression is the definition of draw-polygon assuming we define 1ast: see figure 34.

Formulating the wish list entry for 1ast is straightforward:

;; last : polygon -> posn
;; to extract the last posn on a-poly
(define (last a-poly) ...)

And, because 1ast consumes a polygon, we can reuse the template from above:

(define (last a-poly)

(cond
[ (empty? (rest a-poly)) ... (first a-poly) ...]
[else ... (first a-poly)

(second a-poly)

-158-

X -
FlyHeart.com

TEAM FLY PRESENTS



(last (rest a-poly)) ...1))

Turning the template into a complete function is a short step. If the list is empty except for one
item, this item is the desired result. If (rest a-poly) is not empty, (last (rest a-poly))
determines the last item of a-poly. The complete definition of 1ast is displayed at the bottom of
figure 34.

;; draw-polygon : polygon —-> true
;7 to draw the polygon specified by a-poly
(define (draw-polygon a-poly)

(connect-dots (cons (last a-poly) a-poly)))

;; connect-dots : polygon -> true
;; to draw connections between the dots of a-poly
(define (connect-dots a-poly)

(cond
[ (empty? (rest a-poly)) true]
[else (and (draw-solid-line (first a-poly) (second a-poly) RED)

(connect-dots (rest a-poly)))]))

;; last : polygon -> posn

;; to extract the last posn on a-poly [
(define (last a-poly) N

(cond SO

[ (empty? (rest a-poly)) (first a-pol

[else (last (rest a-poly))l]))

Figure 34: Drawmg a polygon ‘

Exercise 12.3.1. Modify draw-polygon so that it adds the first item of a-poly to its end. This
requires a different auxiliary function: add-at-end.

Exercise 12.3.2. Modify connect-dots so that it consumes an additional posn structure to
which the last posn is connected.

Then modify draw-polygon to use this new version of connect-dots.

Accumulator: The new version of connect-dots is a simple instance of an accumulator-style
function. In part VI we will discuss an entire class of such problems.

12.4 Extended Exercise: Rearranging Words

Newspapers often contain exercises that ask readers to find all possible words made up from

some letters. One way to play this game is to form all possible arrangements of the letters in a

systematlc manner and to see which arrangements are dictionary words. Suppose the letters “"a,"
'd," “'e," and 'r" are given. There are twenty-four possible arrangements of these letters:

-159-

X -
FlyHeart.com

TEAM FLY PRESENTS



ader eadr erad drea ared
daer edar erda arde raed
dear edra adre rade read
dera aerd dare rdae reda
aedr eard drae rdea

The three legitimate words in this list are “‘read," "*dear," and ""dare."

The systematic enumeration of all possible arrangements is clearly a task for a computer program.
It consumes a word and produces a list of the word's letter-by-letter rearrangements.

One representation of a word is a list of symbols. Each item in the input represents a letter: ' a,
'b, ..., 'z. Here is the data definition for words:

A word is either

1. empty, or o
2. (cons a w) where aisasymbol('a, 'b, ..., 'z)and wis a word. |

Exercise 12.4.1. Formulate the data definition for lists 0
examples of words and lists of words.

;; arrangements
;; to create a llSt”
(define (arran
(cond -

[ (empty? a-

[else ... (arrangements (rest a-word)) ...]))

Given the contract, the supporting data definitions, and the examples, we can now look at each
cond-line in the template:

1. Ifthe input is empty, there is only one possible rearrangement of the input: the empty
word. Hence the result is (cons empty empty), the list that contains the empty list as
the only item.

2. Otherwise there is a first letter in the word, and (first a-word) is that letter and the
recursion produces the list of all possible rearrangements for the rest of the word. For
example, if the list is

3. (cons 'd (cons 'e (cons 'r empty)))
then the recursion is (arrangements (cons 'e (cons 'r empty))). It will produce
the result

(cons (cons 'e (cons 'r empty))
(cons (cons 'r (cons 'e empty))
empty))

-160-

X -
FlyHeart.com

TEAM FLY PRESENTS



To obtain all possible rearrangements for the entire list, we must now insert the first item,
'd in our case, into all of these words between all possible letters and at the beginning
and end.

The task of inserting a letter into many different words requires processing an arbitrarily large
list. So, we need another function, call it insert-everywhere/in-all-words, to complete the
definition of arrangements:

(define (arrangements a-word)
(cond
[ (empty? a-word) (cons empty empty) ]
[else (insert-everywhere/in-all-words (first a-word)
(arrangements (rest a-word)))]))

Exercise 12.4.2. Develop the function insert-everywhere/in-all-words. It consumes a

symbol and a list of words. The result is a list of words like its second argument, but with the
first argument inserted between all letters and at the beginning and the end of all words of the
second argument.

Hint: Reconsider the example from above. We stopped and decided that We needed to insert 'd
into the words (cons 'e (cons 'r empty)) and (cons 'r (cons—l'e empty) ). The
following is therefore a natural candidate: ~2 |

(insert-everywhere/in-all-words 'd
(cons (cons 'e (cons 'r empty))
(cons (cons 'r (cons 'e empty))
empty)))
N
for the *"function examples" step. Keep in:
sequence of (partial) words “erand “re

at the second input corresponds to the

Also, use the Schemg;f,ﬁ'ép;é:gatioh\ \pperid; which consumes two lists and produces the
concatenation of the two lists. For example:

(append (list 'a 'b 'c) (list 'd 'e))
= (list 'a 'b 'c 'd 'e)

We will discuss the development of functions such as append in section 17.

3 The term " “wish list" in this context is due to Dr. John Stone.
31 Mr. Paul C. Fisher inspired this section.

#* The mathematical term is permutation.

-161-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 13

Intermezzo 2: List Abbreviations

Using cons to create lists is cumbersome if a list contains many items. Fortunately, Scheme
provides the 1ist operation, which consumes an arbitrary number of values and creates a list.
Here is Scheme's extended syntax:

<prm> = list
The extended collection of values is

<val> = (list <val> ... <val>)

A simpler way to understand 1ist expressions is to think of them as abbreviations. Specifically,
every expression of the shape Rt

(list exp-1 ... exp-n)

stands for a series of n cons expressions:

(cons exp-1 (cons ... (cons exp
PR
Recall that empty is not an item of the

(list 1 2)
= (cons 1 (cgn”

(list 'Houston 'Dal
= (cons 'Houston (gpns 'Dallas (cons 'SanAntonio empty)))

(list false true false false)
= (cons false (cons true (cons false (cons false empty))))

They introduce lists with two, three, and four items, respectively.

Of course, we can apply 1ist not only to values but also to expressions:

(list (+ 0 1) (+ 1 1))
= (list 1 2)

Before the list is constructed, the expressions must be evaluated. If during the evaluation of an
expression an error occurs, the list is never formed:

(list (/ 1 0) (+ 1 1))
= /: divide by zero

In short, 1ist behaves just like any other primitive operation.

-162-

X -
FlyHeart.com

TEAM FLY PRESENTS



The use of 1ist greatly simplifies the notation for lists with many items and lists that contains
lists or structures. Here is an example:

(list 01 2 345 6 7 8 9)

This list contains 10 items and its formation with cons and empty would require 10 uses of cons
and one instance of empty. Similarly, the list

(list (list 'bob 0 'a)
(list 'carl 1 'a)
(list 'dana 2 'b)
(list 'erik 3 'c)
(list 'frank 4 'a)
(list 'grant 5 'b)
(list 'hank 6 'c)
(list 'ian 8 'a)
(list 'john 7 'd)
(list 'karel 9 'e))

requires 11 uses of 1ist in contrast to 40 of cons and 11 of empty.

,,,,4
[

|
Exercise 13.1.1. Use cons and empty to construct the equivalent of the ﬁq‘llowing lists:
~

1. (1ist 01 2 3 4 5)
2. (list (list 'adam 0) (list 'eve 1)
3. (list 1 (list 1 2) (list 1 2 3)).

Exercise 13.1.2. Use 1ist to construct the e nt of the following lists:
cons 'a (cons 'b/( aﬁs /\£$>rd ;cons 'e empty)))))
s )) empty)

(

(cons (cons l/}Cﬁ\ g
(cons 'a (ggﬁ~ (coﬁ 1 9@9&?) (cons false empty))).
( )

b=

cons (coné/l\X§Qns\x/eﬁbty)) (cons (cons 2 (cons 3 empty)) empty))
Start by determining how many items each list and each nested list contains.

Exercise 13.1.3. On rare occasions, we encounter lists formed with cons and 1ist.
Reformulate the following lists using cons and empty exclusively:

cons 'a (list 0 false))
list (cons 1 (cons 13 empty)))
list empty empty (cons 1 empty))

b S

cons 'a (cons (list 1) (list false empty))).

Then formulate the lists using 1ist.

Exercise 13.1.4. Determine the values of the following expressions:
(list (symbol=? 'a 'b) (symbol=? 'c 'c) false)

1
2. (list (+ 10 20) (* 10 20) (/ 10 20))
3. (list 'dana 'jane 'mary 'laura)

— >
FlyHeart.com

TEAM FLY PRESENTS



Exercise 13.1.5. Determine the values of

(first (list 1 2 3))

(rest (list 1 2 3))

The use of 1ist makes it significantly easier to evaluate expressions involving lists. Here are the
recursive steps from an example from section 9.5:

(sum (list (make-ir 'robot 22.05) (make-ir 'doll 17.95)))
= (+ (ir-price (first (list (make-ir 'robot 22.05) (make-ir 'doll
17.95))))
(sum (rest (list (make-ir 'robot 22.05) (make-ir 'doll 17.95)))))
= (+ (ir-price (make-ir 'robot 22.05))
(sum (list (make-ir 'doll 17.95))))
At this place, we use one of the equations governing
the new primitive operations for the first time:

= (+ 22.05
(sum (list (make—-ir 'doll 17.95))))
= (+ 22.05
(+ (ir-price (first (list (make-ir 'doll 17.95))))
(sum (rest (list (make—-ir 'doll 17.95)))))) q
= (+ 22.05 g |

(+ (ir-price (make-ir 'doll 17.95)) ~

(sum empty))) A \
= (+ 22.05 (+ 17.95 (sum empty)))
= (+ 22.05 (+ 17.95 0))

Since the laws of first and rest carry overto 1i alucs na natural manner, an evaluation
using 1ist does not need to expand 11 ;t 1nt0 ﬁsé\s\of cons ‘and empty.

Following an old programming Ianguagé cOmr\gtmn we may abbreviate lists and symbols even
further. If a list is formulated Wlth Tist, we can simply agree to drop list and that each opening

parenthesis stands for 1tself and the wm”d “1ist. For example,

'(1 2 3) .
abbreviates %
(list 1 2 3)

or

(cons 1 (cons 2 (cons 3 empty)))

Similarly,

"((1 2) (3 4) (5 6))
stands for
(list (list 1 2) (list 3 4) (list 5 6)),

which can be further expanded into cons and empty expressions.

If we drop quotes in front of symbols, writing lists of symbols is a breeze:

'(a b ¢)
This short-hand is an abbreviation for
(list 'a 'b 'c)

And, more impressively,
-164-

= _—
FlyHeart.com

TEAM FLY PRESENTS



' (<html>
(<title> My First Web Page)
(<body> Oh!))
stands for
(list '<html>
(list '<title> "My 'First 'Web 'Page)
(list '<body> 'Oh!))

Exercise 13.1.6. Restore 1ist and quotes where necessary:

1

[l
\
s‘yt interesting))

1.
2 '(l a2 b 3 c)
3.
4. '"((alan 1000)
5. (barb 2000)
6. (carl 1500)
7. (dawn 2300))
8.
9. '((My First Paper)
10. (Sean Fisler)
11. (Section 1
12. (Subsection 1 Life is difficult)
13. (Subsection 2 But learning things @95?
14. (Section 2 ~
15. Conclusion? What conclusion?))

*> The convention is due to LISP, an early but highfx\
in 1958. Scheme inherited many ideas from LISP, b \\t\\1 i

-165-

X -
FlyHeart.com

TEAM FLY PRESENTS

-
\
\
\
\
\
\
O

\ : :
d pr()}g,m(mmmg language designed
different language.



Part 111

More on Processing Arbitrarily Large Data

-166-

= <
FlyHeart.com

TEAM FLY PRESENTS



Section 14

More Self-referential Data Definitions

Lists and natural numbers are two classes of data whose description requires self-referential data
definitions. Both data definitions consist of two clauses; both have a single self-reference. Many
interesting classes of data, however, require more complex definitions than that. Indeed, there is
no end to the variations. It is therefore necessary to learn how to formulate data definitions on
our own, starting with informal descriptions of information. Once we have those, we can just
follow a slightly modified design recipe for self-referential data definitions.

14.1 Structures in Structures

Medical researchers rely on family trees to do research on hereditary diseases. They may, for
example, search a family tree for a certain eye color. Computers can help Wlth these tasks, so it is
natural to design representations of family trees and functlons for proeessmg them.

One way to maintain a family tree of a family is to add a node fthe tree every time a child is
born. From the node, we can draw connections to the node for the, father and the one for the
mother, which tells us how the people in the tree are elated For those people in the tree whose
parents are unknown, we do not draw any conneetro‘ 'he result is a so-called ancestor Sfamily
tree because, given any node in the tree nd the -ancestors of that person if we follow the
arrows but not the descendants.

As we record a family - ce, we' 'ay"'a 0 want to record certain pieces of information. The birth
date, birth weight, the color of the eyes, and the color of the hair are the pieces of information
that we care about. Others r cord different information.

Carl (1926) Bettina (1926)
BEyes: pgreen Eyem: pgreem

e

B

Adan (1950) Dave (1955) Eva (1965) Fred (1966)

Eyes:  vellow Eyen: black Eyes: blne Eyen: pink
Guatav (1088)
Eyves: brown

Figure 35: A sample ancestor family tree

-167-

X -
FlyHeart.com

TEAM FLY PRESENTS



See figure 35 for a drawing of an ancestor family tree. Adam is the child of Bettina and Carl; he
has yellow eyes and was born in 1950. Similarly, Gustav is the child of Eva and Fred, has brown
eyes, and was born in 1988. To represent a child in a family tree is to combine several pieces of
information: information about the father, the mother, the name, the birth date, and eye color.
This suggests that we define a new structure:

(define-struct child (father mother name date eyes))

The five fields of child structures record the required information, which suggests the following
data definition:

A child is a structure:
(make-child £ m na da ec)
where f and m are child structures; na and ec are symbols; and da is a number.
While this data definition is simple, it is unfortunately also useless. The definition refers to itself
but, because it doesn't have any clauses, there is no way to create a chi1d structure. If we tried to

create a child structure, we would have to write
(make-child

(make-child P

(make-child ‘

(make-child o~ |

~_

)))

without end. It is for this reason that we demand tha all self-referential data definitions consist

of several clauses (for now) and that at least one of the: does not refer to the data definition.
N

Let's postpone the data definition for a moment and Study instead how we can use child
structures to represent family trees ”,,Supp‘, we are about to add a child to an existing family tree,
and furthermore suppose that Iready have representations for the parents. Then we can just
construct a new child xainple for Adam we could create the following child
structure:

(make-child Carl Bettina 'Adam 1950 'yellow)
assuming carl and Bettina stand for representations of Adam's parents.

The problem is that we don't always know a person's parents. In the family depicted in figure 35,
we don't know Bettina's parents. Yet, even if we don't know a person's father or mother, we must
still use some Scheme value for the two fields in a chi1d structure. We could use all kinds of
values to signal a lack of information (5, false, or 'none); here, we use empty. For example, to
construct a child structure for Bettina, we do the following:

(make-child empty empty 'Bettina 1926 'green)
Of course, if only one of the two parents is missing, we fill just that field with empty.
Our analysis suggests that a chi1d node has the following data definition:

A child node is (make-child f m na da ec) where

-168-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



1. f and m are either

a. empty Or

b. child nodes;
2. na and ec are symbols;
3. dais a number.

This definition is special in two regards. First, it is a self-referential data definition involving
structures. Second, the data definition mentions two alternatives for the first and second
component. This violates our conventions concerning the shape of data definitions.

We can avoid this problem by defining the collection of nodes in a family tree instead:
A family-tree-node (short: fin) is either

1. empty; or
2. (make-child f m na da ec)
where f and m are fins, na
and ec are symbols, and da is a number.
This new definition satisfies our conventions. It consists of two clauses Qﬂe of the clauses is
self-referential, the other is not.

In contrast to previous data definitions involving stmct""""es the definition of ftn is not a plain
explanation of what kind of data can show up in Wthhk el ."’Instea, g it is multi-clausal and self-
referential. Considering that this is the first such data“ efin y ion, let us carefully translate the
example from figure 35 and thus reassur: ours es th 12 he new class of data can represent the
information of interest. “ '

The information for Carl

(make-child emp rl 1926 'green)

Bettina and Fred are represented with similar nodes. Accordingly, the node for Adam is created
with

(make-child (make-child empty empty 'Carl 1926 'green)
(make-child empty empty 'Bettina 1926 'green)
'Adam
1950
'yellow)

As the examples show, a simple-minded, node-by-node transliteration of figure 35 requires
numerous repetitions of data. For example, if we constructed the chi1d structure for Dave like
the one for Adam, we would get

(make-child (make-child empty empty 'Carl 1926 'green)
(make-child empty empty 'Bettina 1926 'green)
'Dave
1955
'black)

-169-

X -
FlyHeart.com

TEAM FLY PRESENTS



Hence it is a good idea to introduce a variable definition per node and to use the variable
thereafter. To make things easy, we use carl to stand for the child structure that describes Carl,
and so on. The complete transliteration of the family tree into Scheme can be found in figure 36.

;; Oldest Generation:
(define Carl (make-child empty empty 'Carl 1926 'green))
(define Bettina (make-child empty empty 'Bettina 1926 'green))

;; Middle Generation:

(define Adam (make-child Carl Bettina 'Adam 1950 'yellow))
(define Dave (make-child Carl Bettina 'Dave 1955 'black))
(define Eva (make-child Carl Bettina 'Eva 1965 'blue))
(define Fred (make-child empty empty 'Fred 1966 'pink))

;; Youngest Generation:
(define Gustav (make-child Fred Eva 'Gustav 1988 'brown))

Figure 36: A Scheme representation of the sample family tree

The structure definitions in figure 36 naturally correspond to an image of deeply nested boxes.
Each box has five compartments. The first two contain boxes again, whic w1n turn contain boxes
in their first two compartments and so on. Thus, if we were to draw the structure definitions for
the family tree using nested boxes, we would quickly be overwhelmed by the details of the
picture. Furthermore, the picture would copy certain portions of the tree _]ust like our attempt to
use make-child without variable definitions. For these reasons, it ls,better to imagine the
structures as boxes and arrows, as originally. drawn 35. In general, a programmer must
flexibly switch back and forth between both o \hese graphical illustrations. For extracting values
from structures, the boxes-in-boxes 1mag best for finding our way around large
collections of interconnected structures, th. bcxes; nd-arrows image works better.

of the family tree representation, we can turn to the design
Let us first look at a generic function of this kind:

Equipped with a ﬁrm_underst nd
of functions that consume ami /

;; fun-for-ftn : ftn -> 27?7
(define (fun-for-ftn a-ftree) ...)

After all, we should be able to construct the template without considering the purpose of a
function.

Since the data definition for ftns contains two clauses, the template must consist of a cond-
expression with two clauses. The first deals with empty, the second with chi1d structures:

;; fun-for-ftn : ftn -> 27?7
(define (fun-for-ftn a-ftree)

(cond
[ (empty? a-ftree) ...]
[else ; (child? a-ftree)

1))

Furthermore, for the first clause, the input is atomic so there is nothing further to be done. For
the second clause, though, the input contains five pieces of information: two other family tree
nodes, the person's name, birth date, and eye color:

-170-

X -
FlyHeart.com

TEAM FLY PRESENTS



;; fun-for-ftn : ftn -> 2?27?27
(define (fun-for-ftn a-ftree)
(cond
[ (empty? a-ftree) ...]
[else
(fun-for-ftn (child-father a-ftree))
(fun—-for-ftn (child-mother a-ftree))
(child-name a-ftree)
(child-date a-ftree)
(child-eyes a-ftree) ...]))

We also apply fun-for-ftn to the father and mother fields because of the self-references in
the second clause of the data definition.

Let us now turn to a concrete example: blue-eyed-ancestor?, the function that determines
whether anyone in some given family tree has blue eyes:

;7 blue-eyed-ancestor? : ftn -> boolean
;7 to determine whether a-ftree contains a child
;7 structure with 'blue in the eyes field
(define (blue-eyed-ancestor? a-ftree) ...) P
[
o~ . |
Following our recipe, we first develop some examples. Consider the- famlly tree node for Carl.
He does not have blue eyes, and because he doesn't have any (known) ancestors in our family

tree, the family tree represented by this node does not contain ‘person with blue eyes. In short,

(blue-eyed-ancestor? Carl)

evaluates to false. In contrast, the fama]y tr

epresented by Gustav contains a node for Eva
who does have blue eyes. Hence 9

evaluates to true.

The function template is like that of fun-for-ftn, except that we use the name blue-eyed-
ancestor?. As always, we use the template to guide the function design. First we assume that
(empty? a-ftree) holds. In that case, the family tree is empty, and nobody has blue eyes.
Hence the answer must be false.

The second clause of the template contains several expressions, which we must interpret:

[

(blue-eyed-ancestor? (child-father a-ftree)), which determines whether

someone in the father's ftn has blue eyes;

2. (blue-eyed-ancestor? (child-mother a-ftree)), which determines whether
someone in the mother's ftn has blue eyes;

3. (child-name a-ftree), which extracts the child's name;

4. (child-date a-ftree), which extracts the child's date of birth; and

(child-eyes a-ftree), which extracts the child's eye color.

9]

-171-

X -
FlyHeart.com

TEAM FLY PRESENTS



It is now up to us to use these values properly. Clearly, if the chi1d structure contains 'blue in
the eyes field, the function's answer is true. Otherwise, the function produces true if there is a
blue-eyed person in either the father's or the mother's family tree. The rest of the data is useless.
Our discussion suggests that we formulate a conditional expression and that the first condition is

(symbol=? (child-eyes a-ftree) 'blue)

The two recursions are the other two conditions. If either one produces t rue, the function
produces true. The else-clause produces false.

In summary, the answer in the second clause is the expression:

(cond
[ (symbol=? (child-eyes a-ftree) 'blue) true]
[ (blue-eyed-ancestor? (child-father a-ftree)) true]
[ (blue-eyed-ancestor? (child-mother a-ftree)) true]
[

else false])

The first definition in figure 37 pulls everything together. The second deﬁmtlon shows how to
formulate this cond-expression as an equivalent or-expression, testmg onf ‘condltlon after the
next, until one of them is t rue or all of them have evaluated to false:

;; blue-eyed-ancestor? : ftn -> booleaﬁ ) ey
;; to determine whether a-ftree co“talms a chl d//
;; structure with 'blue in the eyes. '
;; version 1l: using a nested\ génd—
(define (blue-eyed- ancestqr° aofg
(cond |

[ (empty? a- ftree)

o

/{(symbalt? ld-eyes a-ftree) 'blue) true]

< {Wblue—eyedééncestor° (child-father a-ftree)) true]
t blue*vyéd ancestor? (child-mother a-ftree)) true]
else falsel)1))
;; blue-eyed-ancestor? : ftn -> boolean

;; to determine whether a-ftree contains a child
;7 structure with 'blue in the eyes field
;; version 2: using an or-expression
(define (blue-eyed-ancestor? a-ftree)
(cond
[ (empty? a-ftree) false]
[else (or (symbol=? (child-eyes a-ftree) 'blue)
(or (blue-eyed-ancestor? (child-father a-ftree))
(blue-eyed-ancestor? (child-mother a-ftree))))]))

Figure 37: Two functions for finding a blue-eyed ancestor

The function blue-eyed-ancestor? is unusual in that it uses the recursions as conditions in a
cond-expressions. To understand how this works, let us evaluate an application of blue-eyed-
ancestor? to Carl by hand:

(blue-eyed-ancestor? Carl)

-172-

X -
FlyHeart.com

TEAM FLY PRESENTS



(blue-eyed-ancestor? (make-child empty empty 'Carl 1926 'green))

= (cond
[ (empty? (make-child empty empty 'Carl 1926 'green)) false]
[else
(cond
[ (symbol="?
(child-eyes (make-child empty empty 'Carl 1926 'green))
'blue)
true]
[ (blue-eyed-ancestor?
(child-father (make-child empty empty 'Carl 1926 'green)))
true]
[ (blue-eyed-ancestor?
(child-mother (make-child empty empty 'Carl 1926 'green)))
true]
[else false])])
= (cond

[ (symbol=? 'green 'blue) true]

[ (blue-eyed-ancestor? empty) true]

[ (blue-eyed-ancestor? empty) true]

[else false])
(cond

[false true]

[false true]

[false true] |

[else false]) o
false

The evaluation confirms that blue-eyed-ancestor:
illustrates how the function works.

produces the same output fi nputs mpty “and carl.

Exercise 14.1.2. Conﬁrm tha

(blue-eyed-ancestor? empty)
evaluates to false with a hand-evaluation.

Evaluate (blue-eyed-ancestor? Gustav) by hand and with DrScheme. For the hand-
evaluation, skip those steps in the evaluation that concern extractions, comparisons, and
conditions involving empty?. Also reuse established equations where possible, especially the one
above.

Exercise 14.1.3. Develop count-persons. The function consumes a family tree node and
produces the number of people in the corresponding family tree.

Exercise 14.1.4. Develop the function average-age. It consumes a family tree node and the
current year. It produces the average age of all people in the family tree.

Exercise 14.1.5. Develop the function eye-colors, which consumes a family tree node and
produces a list of all eye colors in the tree. An eye color may occur more than once in the list.

-173-

X -
FlyHeart.com

TEAM FLY PRESENTS



Hint: Use the Scheme operation append, which consumes two lists and produces the
concatenation of the two lists. For example:

(append (list 'a 'b 'c) (list 'd 'e))
= (list 'a 'b 'c 'd 'e)

We discuss the development of functions like append in section 17.

Exercise 14.1.6. Suppose we need the function proper-blue-eyed-ancestor?. It is like
blue-eyed-ancestor? but responds with t rue only when some proper ancestor, not the given
one, has blue eyes.

The contract for this new function is the same as for the old one:

;; proper-blue-eyed-ancestor? : ftn -> boolean
;; to determine whether a-ftree has a blue-eyed ancestor
(define (proper-blue-eyed-ancestor? a-ftree) ...)

The results differ slightly.

Pl
r” ‘

To appreciate the difference, we need to look at Eva, who is blue- eyed but‘ does not have a blue-
eyed ancestor. Hence

(blue-eyed-ancestor? Eva)

1S true but

(proper—blue—eyed—ancestor?/\

1S false. After all Eva is qestorof ilerself.

Suppose a friend seé‘éiy“theipurp()\s\ itement and comes up with this solution:

(define (proper-blue-eyed-ancestor? a-ftree)
(cond
[ (empty? a-ftree) false]
[else (or (proper-blue-eyed-ancestor? (child-father a-ftree))
(proper-blue-eyed-ancestor? (child-mother a-ftree)))1]))

What would be the result of (proper-blue-eyed-ancestor? a) for any ftn A?

Fix the friend's solution.

14.2 Extended Exercise: Binary Search Trees

Programmers often work with trees, though rarely with family trees. A particularly well-known
form of tree is the binary search tree. Many applications employ binary search trees to store and
to retrieve information.

To be concrete, we discuss binary trees that manage information about people. In this context, a
binary tree is similar to a family tree but instead of child structures it contains nodes:

-174-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define-struct node (ssn name left right))

Here we have decided to record the social security number, the name, and two other trees. The
latter are like the parent fields of family trees, though the relationship between a node and its
left and right trees is not based on family relationships.

The corresponding data definition is just like the one for family trees: A binary-tree (short: BT)
is either

1. false;or
2. (make-node soc pn 1lft rgt)
where soc is a number, pn is a symbol, and 1ft and rgt are BTS.

The choice of fa1se to indicate lack of information is arbitrary. We could have chosen empty
again, but fa1se is an equally good and equally frequent choice that we should become familiar
with.

Here are two binary trees:

(make-node -

15 S 1
false
(make-node 24 'i false false))

(make-node

15
(make-node 87 'h false fali
false) ’ |

Figure 38 shows how w shoul thin about such trees. The trees are drawn upside down, that is,
with the root at the top d the cro_, n of the tree at the bottom. Each circle corresponds to a node,
labeled with the ssn field o‘f a corresponding node structure. The trees omit false.

Exercise 14.2.1. Draw the two trees above in the manner of figure 38. Then develop
contains-bt. The function consumes a number and a BT and determines whether the number
occurs in the tree.

Exercise 14.2.2. Develop search-bt. The function consumes a number n and a BT. If the tree
contains a node structure whose soc field is n, the function produces the value of the pn field in
that node. Otherwise, the function produces false.

Hint: Use contains-bt. Or, use boolean? to find out whether search-bt was successfully
used on a subtree. We will discuss this second technique, called backtracking, in the intermezzo
at the end of this part.

Tree A: Tree B:

-175-

X -
FlyHeart.com

TEAM FLY PRESENTS



10 23 99 & 93

Figure 38: A binary search tree and a binary tree

Both trees in figure 38 are binary trees but they differ in a significant way. If we read the
numbers in the two trees from left to right we obtain two sequences:

s A
e i

L

The sequence for tree A is sorted in ascending order, the one for B is not. |

A binary tree that has an ordered sequence of information is a BINARY SEARC‘H tree. Every binary
search tree is a binary tree, but not every binary tree is a blnary search tree. We say that the class
of binary search trees is a proper suBcLass of that of binary ftr es, that is, a class that does not
contain all binary trees. More concretely, we formulate 1 “or data invariant -- that
distinguishes a binary search tree from a binary tree

A binary-search-tree (sho

1. fals&is always aBS!
2. (make- node}soc pn 1ft rgt) isaBsT if
a. 1ft and rgt are BSTS,
b. all ssn numbers in 1ft are smaller than soc, and
c. all ssn numbers in rgt are larger than soc.

The second and third conditions are different from what we have seen in previous data
definitions. They place an additional and unusual burden on the construction BsTs. We must
inspect all numbers in these trees and ensure that they are smaller (or larger) than soc.

Exercise 14.2.3. Develop the function inorder. It consumes a binary tree and produces a list of
all the ssn numbers in the tree. The list contains the numbers in the left-to-right order we have
used above.

Hint: Use the Scheme operation append, which concatenates lists:

(append (list 1 2 3) (list 4) (list 5 6 7))
evaluates to
(list 1 2 345 6 7)

-176-

X -
FlyHeart.com

TEAM FLY PRESENTS



What does inorder produce for a binary search tree?

Looking for a specific node in a BST takes fewer steps than looking for the same node in a BT. To
find out whether a BT contains a node with a specific ssn field, a function may have to look at
every node of the tree. In contrast, to inspect a binary search tree requires far fewer inspections
than that. Suppose we are given the BST:

(make-node 66 'a L R)

If we are looking for 66, we have found it. Now suppose we are looking for 63. Given the above
node, we can focus the search on L because al/ nodes with ssns smaller than 66 are in L.
Similarly, if we were to look for 99, we would ignore T and focus on r because all nodes with
ssns larger than 66 are in R.

Exercise 14.2.4. Develop search-bst. The function consumes a number n and a BsT. If the
tree contains a node structure whose soc field is n, the function produces the value of the pn
field in that node. Otherwise, the function produces fa1se. The function organization must
exploit the BST Invariant so that the function performs as few comparisons as necessary.
Compare searching in binary search trees with searching in sorted lists (ex’ércise 12.2.2).

A~ | ‘
Building a binary tree is easy; building a binary search tree is a comphcatéd error-prone affair.
To create a BT we combine two BTS, an ssn number and a name with make-node. The result is,
by definition, a BT. To create a BST, this procedure fails beca € result would typically not be
a BsT. For example, if one tree contains 3 and 5, and‘th‘ other on itains 2 and 6, there is no
way to join these two BSTs into a single binary searc

We can overcome this problem in (at least wo ways. First, given a list of numbers and symbols,
we can determine by hand wh the correspon\‘ ing BST should look like and then use make-node
to build it. Second, we ca ca functmn that builds a BsT from the list, one node after another.

Exercise 14.2.5. Develo ;he ction create-bst. It consumes a BST B, a number N, and a
symbol s. It produces a BST that is just like B and that in place of one false subtree contains the
node structure

(make-node N S false false)

Test the function with (create-bst false 66 'a); this should create a single node. Then
show that the following holds:

(create-bst (create-bst false 66 'a) 53 'b)
= (make-node 66
'a
(make-node 53 'b false false)
false)

Finally, create tree A from figure 38 using create-bst.

Exercise 14.2.6. Develop the function create-bst-from-1list. It consumes a list of numbers
and names; it produces a BST by repeatedly applying create-bst.

-177-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



The data definition for a list of numbers and names is as follows:
A list-of-number/name is either
1. empty or
2. (cons (list ssn nom) lonn)
where ssn is a number, nom a symbol,

and lonnis a list-of-number/name.

Consider the following examples:

(define sample (define sample
'((99 o) (list (list 99 'o)
(77 1) (list 77 'l)
(24 1) (list 24 'i)
[

(10 h) (list 10 'h) <>_||

(95 9g) (list

(15 d) (list

They are equivalent,kwa th‘ough the left one is defined with the quote abbreviation, the right one
using 1ist. The left tree in figure 38 is the result of using create-bst-from-1ist on this list.

14.3 Lists in Lists

The World Wide Web, or just *‘the Web," has become the most interesting part of the Internet, a
global network of computers. Roughly speaking, the Web is a collection of Web pages. Each
Web page is a sequence of words, pictures, movies, audio messages, and many more things.
Most important, Web pages also contain links to other Web pages.

A Web browser enables people to view Web pages. It presents a Web page as a sequence of
words, images, and so on. Some of the words on a page may be underlined. Clicking on
underlined words leads to a new Web page. Most modern browsers also provide a Web page
composer. These are tools that help people create collections of Web pages. A composer can,
among other things, search for words or replace one word with another. In short, Web pages are
things that we should be able to represent on computers, and there are many functions that
process Web pages.

-178-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



To simplify our problem, we consider only Web pages of words and nested Web pages. One way
of understanding such a page is as a sequence of words and Web pages. This informal
description suggests a natural representation of Web pages as lists of symbols, which represent
words, and Web pages, which represent nested Web pages. After all, we have emphasized before
that a list may contain different kinds of things. Still, when we spell out this idea as a data
definition, we get something rather unusual:

A Web-page (short: WP) is either

1. empty,
2. (cons s wp)

where s is a symbol and wp is a Web page; or
3. (cons ewp wp)

where both ewp and wp are Web pages.

This data definition differs from that of a list of symbols in that it has three clauses instead of

two and that it has three self-references instead of one. Of these self-references, the one at the

beginning of a constructed list is the most unusual. We refer to such Web pages as immediately

embedded Web pages. H
<~ ||

Because the data definition is unusual, we construct some examples of Web pages before we

continue. Here is a plain page: \ N\

' (The TeachScheme! Project aims to im
problem-solving and organization sk
school students. It provides sof
notes as well as exercises

' (The Teacthh ;
Here you can find: \
(LectureNotes fox Teachers)
(Guidance for (DrScheme: a Scheme programming environment))
(Exercise Sets)

(Solutions for Exercises)

For further information: write to scheme@cs)

The immediately embedded pages start with parentheses and the symbols 'LectureNotes,
'Guidance, 'Exercises, and 'solutions. The second embedded Web page contains another
embedded page, which starts with the word ' Drscheme. We say this page is embedded with
respect to the entire page.

Let's develop the function size, which consumes a Web page and produces the number of words
that it and all of its embedded pages contain:

;; size : WP -> number
;7 to count the number of symbols that occur in a-wp
(define (size a-wp) ...)

The two Web pages above suggest two good examples, but they are too complex. Here are three
examples, one per subclass of data:

-179-

X -
FlyHeart.com

TEAM FLY PRESENTS



(= (size empty)

0)

(= (size (cons 'One empty))
1)

(= (size (cons (cons 'One empty) empty))
1)

The first two examples are obvious. The third one deserves a short explanation. It is a Web page
that contains one immediately embedded Web page, and nothing else. The embedded Web page
is the one of the second example, and it contains the one and only symbol of the third example.

To develop the template for size, let's carefully step through the design recipe. The shape of the
data definition suggests that we need three cond-clauses: one for the empty page, one for a page
that starts with a symbol, and one for a page that starts with an embedded Web page. While the
first condition is the familiar test for empty, the second and third need closer inspection because
both clauses in the data definition use cons, and a simple cons? won't distinguish between the
two forms of data.

If the page is not empty, it is certainly constructed, and the distinguishing feature is the first item
on the list. In other words, the second condition must use a predicate that tests the first item on

‘ |
a-wp.

size : WP -> number

rr

(define
(cond
[ (empty? a-wp) ...]
[ (symbol? (first a-wp)) 1 ‘ > (size (rest a-wp)) ...]
[else ... (size (first @= lsize (rest a-wp)) ...1))

(size a-wp)

The rest of the template is as-usual. The second-and third cond clauses contain selector
expressions for the first item and the rest of the list. Because (rest a-wp) is always a Web page
and because (first'a-wp) i in the third case, we also add a recursive call to size for these
selector expressions. \

Using the examples and the template, we are ready to design size: see figure 39. The differences
between the definition and the template are minimal, which shows again how much of a function
we can design by merely thinking systematically about the data definition for its inputs.

;; size : WP -> number
;; to count the number of symbols that occur in a-wp
(define (size a-wp)

(cond
[ (empty? a-wp) 0]
[ (symbol? (first a-wp)) (+ 1 (size (rest a-wp)))]
[else (+ (size (first a-wp)) (size (rest a-wp)))]1))

Figure 39: The definition of size for Web pages

Exercise 14.3.1. Briefly explain how to define size using its template and the examples. Test
size using the examples from above.

-180-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 14.3.2. Develop the function occursi. The function consumes a Web page and a
symbol. It produces the number of times the symbol occurs in the Web page, ignoring the nested
Web pages.

Develop the function occurs2. It is like occursi, but counts all occurrences of the symbol,
including in embedded Web pages.

Exercise 14.3.3. Develop the function replace. The function consumes two symbols, new and
old, and a Web page, a-wp. It produces a page that is structurally identical to a-wp but with all
occurrences of o1d replaced by new.

Exercise 14.3.4. Pecople do not like deep Web trees because they require too many page
switches to reach useful information. For that reason a Web page designer may also want to
measure the depth of a page. A page containing only symbols has depth 0. A page with an
immediately embedded page has the depth of the embedded page plus 1. If a page has several
immediately embedded Web pages, its depth is the maximum of the depths of embedded Web
pages plus 1. Develop depth, which consumes a Web page and computes its depth.

P
@

14.4 Extended Exercise: Evaluating Scheme ‘y;

DrScheme is itself a program that consists of several parts. One function checks whether the
definitions and expressions we wrote down are grammati
evaluates Scheme expressions. With what we have lear:
simple versions of these functions.

Scheme expressrons Another one
i s section, we can now develop

¢ arly, umbers can stand for numbers and symbols for Varlables
Additions and multrphca ons, however, call for a class of compound data because they consist
of an operator and two subf pressrons

A straightforward way to represent additions and multiplications is to use two structures: one for
additions and another one for multiplications. Here are the structure definitions:

(define-struct add (left right))
(define-struct mul (left right))

Each structure has two components. One represents the left expression and the other one the right
expression of the operation.

Scheme expression representation of Scheme expression

3

(make-mul 3 10)

(+ (* 3 3) (* 4 4) (make-add (make-mul 3 3) (make-mul 4 4))

x E

(make-add (make-mul 'x 'x) (make-mul 'y 'y))

-181-

X -
FlyHeart.com

TEAM FLY PRESENTS



(* 1/2 (* 3 3)) (make-mul 1/2 (make-mul 3 3))

Let's look at some examples:
These examples cover all cases: numbers, variables, simple expressions, and nested expressions.

Exercise 14.4.1. Provide a data definition for the representation of Scheme expressions. Then
translate the following expressions into representations:

1. (+ 10 -10)

2. (+ (* 20 3) 33)

3. (* 3.14 (* r r))

4. (+ (* 9/5 c) 32)

5. (+ (* 3.14 (* 0 0)) (* 3.14 (* i 1)))

A Scheme evaluator is a function that consumes a representation of a Scheme expression and
produces its value. For example, the expression 3 has the value 3, (+ 3 5) has the value 8, (+

(* 3 3) (* 4 4)) hasthe value 25, etc. Since we are ignoring deﬁmtlons for now, an
expression that contalns a variable, for example, (+ 3 x), does not have a Value after all, we do
not know what the variable stands for. In other words our Scheme evaluaﬁ)r should be applied
only to representations of expressions that do not contain Varlables We say such expressions are
numeric. -

Exercise 14.4. 2 Develop the functlon numeric?, Wthh nsumes (the representation of) a

f'When the function is tested, modify it so it consumes all
ed version raises an error when it encounters a variable.

expression and compute its valu

kinds of Scheme expres

Exercise 14.4.4. When people evaluate an application (£ a) they substitute a for £'s parameter
in £'s body. More generally, when people evaluate expressions with variables, they substitute the
variables with values.

Develop the function subst. The function consumes (the representation of) a variable (v), a
number (N), and (the representation of) a Scheme expression. It produces a structurally
equivalent expression in which all occurrences of v are substituted by n.

-182-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 15

Mutually Referential Data Definitions

In the preceding section, we developed data representations of family trees, Web pages, and
Scheme expressions. Developing functions for these data definitions was based on one and the
same design recipe. If we wish to develop more realistic representations of Web pages or
Scheme expressions, or if we wish to study descendant family trees rather than ancestor trees, we
must learn to describe classes of data that are interrelated. That is, we must formulate several
data definitions at once where the data definitions not only refer to themselves, but also refer to
other data definitions.

15.1 Lists of Structures, Lists in Structures

When we build a family tree retroactively, we often start from the child's perspectlve and
proceed from there to parents, grandparents, etc. As we construct the tree, we write down who is
whose child rather than who is whose parents. We build a descendant famziy tree.

Drawing a descendant tree proceeds just like drawing an nee: tort er*j,except that all arrows are
reversed. Figure 40 represents the same famlly as th of figure 35, but drawn from the
descendant perspective.

Card (1926)
Byes:

Adan (1950) s Fred (1966)

Fyes: Eyen: pink
Gustav {1938]
Eyen: brown

Figure 40: A descendant family tree

Representing these new kinds of family trees and their nodes in a computer requires a different
class of data than do the ancestor family trees. This time a node must include information about
the children instead of the two parents. Here is a structure definition:

(define-struct parent (children name date eyes))

-183-

X -
FlyHeart.com

TEAM FLY PRESENTS



The last three fields in a parent structure contain the same basic information as a corresponding
child structure, but the contents of the first one poses an interesting question. Since a parent may
have an arbitrary number of children, the children field must contain an undetermined number
of nodes, each of which represents one child.

The natural choice is to insist that the children field always stands for a list of parent
structures. The list represents the children; if a person doesn't have children, the list is empty.
This decision suggests the following data definition:

A parent is a structure:
(make-parent loc n d e)

where 1oc is a list of children, n and e are symbols, and d is a number.
Unfortunately, this data definition violates our criteria concerning definitions. In particular, it
mentions the name of a collection that is not yet defined: list of children.

Since it is impossible to define the class of parents without knowing what a list of children is,
let's start from the latter:

A list of children is either “‘
~_ ||

1. empty Or
2. (cons p loc) where p is a parent and loc-

t of children.

m the "'ééme\proﬁ/lﬂem as the one for
lass of parents, which cannot be defined

This second definition looks standard, but it suffers
parents. The unknown class it refers to is that of th
without a definition for the list of children, and so

The conclusion is that the twc data deﬁ\“mtﬁ; ns refer to each other and are only meaningful if

introduced together:

A parent is a structure:

(make-parent loc n d e)
where 1oc is a list of children, n and e are symbols, and d is a number.

A list-of-children is either

1. empty Or
2. (cons p loc) where p is a parent and 1oc is a list of children.

When two (or more) data definitions refer to each other, they are said to be muTuALLY RECURSIVE OF
MUTUALLY REFERENTIAL.

Now we can translate the family tree of figure 40 into our Scheme data language. Before we can
create a parent structure, of course, we must first define all of the nodes that represent children.
And, just as in section 14.1, the best way to do this is to name a parent structure before we reuse
it in a list of children. Here is an example:

(define Gustav (make-parent empty 'Gustav 1988 'brown))

-184-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



(make-parent (list Gustav) 'Fred 1950 'yellow)

To create a parent structure for Fred, we first define one for Gustav so that we can form (1ist
Gustav), the list of children for Fred.

Figure 41 contains the complete Scheme representation for our descendant tree. To avoid
repetitions, it also includes definitions for lists of children. Compare the definitions with
figure 36 (see page 19), which represents the same family as an ancestor tree.

;7 Youngest Generation:
(define Gustav (make-parent empty 'Gustav 1988 'brown))

(define Fredé&Eva (list Gustav))

;; Middle Generation:

(define Adam (make-parent empty 'Adam 1950 'yellow))
(define Dave (make-parent empty 'Dave 1955 'black))
(define Eva (make-parent Fred&kEva 'Eva 1965 'blue))
(define Fred (make-parent Fred&Eva 'Fred 1966 'pink))

(define Carlé&Bettina (list Adam Dave Eva)) d

;; Oldest Generation: s
(define Carl (make-parent Carl&Bettina 'Carl 1926\'green))
(define Bettina (make-parent Carl&Bettha 'Bettlna 1926 'green))

;s blue- eyedﬁdeScenda‘ parent -> boolean

;7 to determine whetherfa parent or any of its descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field

(define (blue-eyed- ‘descendant? a-parent) ...)

Here are three simple examples, formulated as tests:

(boolean=? (blue-eyed-descendant? Gustav) false)
(boolean=? (blue-eyed-descendant? Eva) true)
(boolean=? (blue-eyed-descendant? Bettina) true)

A glance at figure 40 explains the answers in each case.

According to our rules, the template for blue-eyed-descendant? is simple. Since its input is a
plain class of structures, the template contains nothing but selector expressions for the fields in
the structure:

(define (blue-eyed-descendant? a-parent)
(parent-children a-parent)
(parent-name a-parent)
(parent-date a-parent)
(parent-eyes a-parent) ... )

-185-

X -
FlyHeart.com

TEAM FLY PRESENTS



The structure definition for parent specifies four fields so there are four expressions.

The expressions in the template remind us that the eye color of the parent is available and can be
checked. Hence we add a cond-expression that compares (parent-eyes a-parent) to 'blue:

(define (blue-eyed-descendant? a-parent)
(cond
[ (symbol=? (parent-eyes a-parent) 'blue) true]
[else
(parent-children a-parent)
(parent—-name a-parent)
(parent-date a-parent) ...]))

The answer is t rue if the condition holds. The else clause contains the remaining expressions.
The name and date field have nothing to do with the eye color of a person, so we can ignore
them. This leaves us with

(parent-children a-parent)

an expression that extracts the list of children from the parent structure.

[
If the eye color of some parent structure is not 'b1ue, we must clearly séa‘rch the list of children
for a blue-eyed descendant. Following our guidelines for complex functlons -we add the function
to our wish list and continue from there. The function that we want to put on'a wish list
consumes a list of children and checks whether any. of these or their grandchildren has blue eyes.
Here are the contract, header, and purpose statemen )

;7 blue-eyed-children?
;; to determine whether any oﬁf
;; or has any blue-eyed”
(define (blue-eyed

Using blue-eyed-children? we.can complete the definition of blue-eyed-descendant?:

(define (blue-eyed-~descendant? a-parent)
(cond
[ (symbol=? (parent-eyes a-parent) 'blue) true]
[else (blue-eyed-children? (parent-children a-parent))]))

That is, if a-parent doesn't have blue eyes, we just look through the list of its children.

Before we can test blue-eyed-descendant?, we must define the function on our wish list. To
make up examples and tests for blue-eyed-children?, we use the list-of-children definitions in
figure 41:

(not (blue-eyed-children? (list Gustav)))
(blue-eyed-children? (list Adam Dave Eva))

Gustav doesn't have blue eyes and doesn't have any recorded descendants. Hence, blue-eyed-
children? produces false for (1ist Gustav). In contrast, Eva has blue eyes, and therefore
blue-eyed-children? produces true for the second list of children.

Since the input for blue-eyed-children? is a list, the template is the standard pattern:
-186-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define (blue-eyed-children? aloc)
(cond
[ (empty? aloc) ...]
[else
(first aloc)
(blue-eyed-children? (rest aloc)) ...1]))

Next we consider the two cases. If blue-eyed-children?'s input is empty, the answer is false.
Otherwise we have two expressions:

1. (first aloc), which extracts the first item, a parent structure, from the list; and
2. (blue-eyed-children? (rest aloc)), which determines whether any of the structures
on aloc is blue-eyed or has any blue-eyed descendant.

Fortunately we already have a function that determines whether a parent structure or any of its
descendants has blue eyes: blue-eyed-descendant?. This suggests that we check whether

(blue-eyed-descendant? (first aloc))

holds and, if so, blue-eyed-children? can produce true. If not, the second expression
determines whether we have more luck with the rest of the list. |

|
|
N

Figure 42 contains the complete definitions for both functions: blue eyed descendant? and
blue-eyed-children?. Unlike any other group of functmns these two, functions refer to each
other. They are mutuaLLy RECURsIVE. Not surprisingly, ‘the. mutuﬁl references in the definitions
match the mutual references in data definitions. The 1gure/also contains a pair of alternative
definitions that use or instead of nested cond—éx\gressmns >

;; blue-eyed- descéndant¢ > \rent -> boolean
gL O determlne whether parent any of the descendants (children,
g g grandch;ld{en /and SO @n) have 'blue in the eyes field
(define (biué eyed\—descendant’J a-parent)
(cond \~ /
[ (symbol= ? (parent—eyes a-parent) 'blue) true]
[else (blue;eyed—children? (parent-children a-parent))]))

;7 blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
(cond
[ (empty? aloc) false]
[else
(cond
[ (blue-eyed-descendant? (first aloc)) true]
[else (blue-eyed-children? (rest aloc))])l1))

;7 blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;7 grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
(or (symbol=? (parent-eyes a-parent) 'blue)
(blue-eyed-children? (parent-children a-parent))))

;7 blue-eyed-children? : list-of-children -> boolean

-187-

= _—
FlyHeart.com

TEAM FLY PRESENTS



;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
(cond
[ (empty? aloc) false]
[else (or (blue-eyed-descendant? (first aloc))
(blue-eyed-children? (rest aloc)))1))

Figure 42: Two programs for finding a blue-eyed descendant

Exercise 15.1.1. Evaluate (blue-eyed-descendant? Eva) by hand. Then evaluate (blue-
eyed-descendant? Bettina).

Exercise 15.1.2. Develop the function how-far-removed. It determines how far a blue-eyed
descendant, if one exists, is removed from the given parent. If the given parent has blue eyes,
the distance is 0; if eyes is not blue but some of the structure's children's eyes are, the distance is
1; and so on. If no descendant of the given parent has blue eyes, the function returns false
when it is applied to the corresponding family tree.

Exercise 15.1.3. Develop the function count-descendants, which cong‘llfmes a parent and
produces the number of descendants, including the parent. ~3

Develop the function count-proper-descendants, which ch umes a. parent and produces the
number of proper descendants, that is, all nodes in the family tree , O’ ‘counting the

parent. " Solution

concatenation of the two lists.

15.2 Designing Fiinctions for Mutually Referential
Definitions

The recipe for designing functions on mutually referential data definitions generalizes that for
self-referential data. Indeed, it offers only two pieces of additional advice. First, we must create
several templates simultaneously, one for each data definition. Second, we must annotate
templates with self-references and cross-rererencEs, that is, references among different templates.
Here is a more detailed explanation of the differences:

o The data analysis and design: If a problem mentions a number of different classes of
information (of arbitrary size), we need a group of data definitions that are self-referential
and that refer to each other. In these groups, we identify the self-references and the cross-
references between two data definitions.

In the above example, we needed two interrelated definitions:

-188-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



-189-

APdr.e_ntisa atructure:
(make-parentlog i d e)
where oo E;AistoFchildrEn, imand eare gymbole, and d 12 a number
P
A list of children is either
L. emptyor

2. [gons p loc) where p iz a parent and Joc iz a lizt of children.

The first one concerns parents and another one for list of children. The first
(unconditionally) defines a parent in terms of symbols, numbers, and a list of children,
that is, it contains a cross-reference to the second definition. This second definition is a
conditional definition. Its first clause is simple; its second clause references both the
definition for parents and 1ist-of-children.

Contract, Purpose, Header: To process interrelated classes of data, we typically need
as many functions as there are class definitions. Hence, we must formulate as many
contracts, purpose statements, and headers in parallel as there are data definitions.
Templates: The templates are created in parallel, following the qﬁvice concerning
compound data, mixed data, and self-referential data. Finally, we must determine for
each selector expression in each template whether it corresponds to a cross-reference to
some definition. If so, we annotate it in the same way we annotate cross-references.

Here are the templates for our running examp! k

(define |, |||r-.rl.1mrf.1 parer f)
. [parent-name a-parenf
aq |_p:arerrt date a-paremn

.. [parent-eyes a-pii
- [ forr-chaild ey
| <
(define {fur-childremn alo
[vond P

[(empty? alac) o]
[else ... (fun-parent (first alec)) ... (fin-children (restaloc)) ... 7))

The fun-parent template is unconditional because the data definition for parents does
not contain any clauses. It contains a cross-reference to the second template: to process
the children field of a parent structure. By the same rules, fun-children is
conditional. The second cond-clause contains one self-reference, for the rest of the list,
and one cross-reference for the £irst item of the list, which is a parent structure.

A comparison of the data definitions and the templates shows how analogous the two are.
To emphasize the similarity in self-references and cross-references, the data definitions
and templates have been annotated with arrows. It is easy to see how corresponding
arrows have the same origin and destination in the two pictures.

The body: As we proceed to create the final definitions, we start with a template or a
cond-clause that does not contain self-references to the template and cross-references to

X -
FlyHeart.com

TEAM FLY PRESENTS



other templates. The results are typically easy to formulate for such templates or cond-
clauses.

The rest of this step proceeds as before. When we deal with other clauses or functions, we
remind ourselves what each expression in the template computes, assuming that a//
functions already work as specified in the contracts. Then we decide how to combine
these pieces of data into a final answer. As we do that, we must not forget the guidelines
concerning the composition of complex functions (sections 7.3 and 12).

Figure 43 summarizes the extended design recipe.

Phase Goal Activity
Data to formulate a develop a group of mutually recursive data definitions «
Analysis group of related at least one definition or one alternative in a definition
and Design data definitions must refer to basic data -explicitly identify all
references among the data definitions

Template to formulate a develop as many templates as therg are data definitions
group of function |simultaneously «develop each templates according to
outlines the rules for compound and/or rn1Xed data definitions as

N|
appropriate -annotate the templates ‘with recursions and

cross-applications to match the (cross )references in the
data definitions “

Xpreésien for each template, and
¢ in a template =explain what each
\m each template computes suse additional

nctions where necessary

Body to define a group of |formulate as e
functions :

\e51gn: 1g groups of functions for groups of data definitions
the essent1al steps for others see figures 4 (pg. 5), 12 (pg. 9), and 18 (pg. 10)

15.3 Extended Exerc1se. More on Web Pages

With mutually referential data definitions we can represent Web pages in a more accurate
manner than in section 14.3. Here is the basic structure definition:

(define-struct wp (header body))

The two fields contain the two essential pieces of data in a Web page: a header and a body. The
data definition specifies that a body is a list of words and Web pages:

A Web-page (short: WP) is a structure:

(make-wp h p)
where h is a symbol and p is a (Web) document.

A (Web) document is either

-190-

X -
FlyHeart.com

TEAM FLY PRESENTS



1. empty,

2. (cons s p)
where s is a symbol and p is a document, or
3. (cons w p)

where w is a Web page and p is a document.

Exercise 15.3.1. Develop the function size, which consumes a Web page and produces the
number of symbols (words) it contains.

Exercise 15.3.2.

Develop the function wp-to-file. The function consumes a Web page and produces a list of
symbols. The list contains all the words in a body and all the headers of embedded Web pages.
The bodies of immediately embedded Web pages are ignored.

Exercise 15.3.3. Develop the function occurs. It consumes a symbol and a Web page and
determines whether the former occurs anywhere in the latter, including the embedded Web

pages. ’
Exercise 15.3.4. Develop the program £ind. The function consumes a Wéb page and a symbol.
It produces fa1se, if the symbol does not occur in the body of the page or 1ts embedded Web

pages. If the symbol occurs at least once, it produces a list of the headers that are encountered on
the way to the symbol.

Hint: Define an auxiliary like find that produees on, ; when a Web page contains the
desired word. Use it to define find. Aljematl e ‘ lean? to determine whether a natural
recursion of find produced a list or a boolean. en compute the result again. We will discuss

this second technique, called acktrackmg in the intermezzo at the end of this part.

-191-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Section 16

Development through Iterative Refinement

When we develop real functions, we are often confronted with the task of designing a data
representation for complicated forms of information. The best strategy to approach this task is
apply a well-known scientific technique: iTeEraTIVE REFINEMENT. A scientist's problem is to represent
a part of the real world using mathematics. The result of the effort is called a mober. The scientist
then tests the model in many ways, in particular by predicting certain properties of events. If the
model truly captured the essential elements of the real world, the prediction will be accurate;
otherwise, there will be discrepancies between the predictions and the actual outcomes. For
example, a physicist may start by representing a jet plane as a point and by predicting its
movement in a straight line using Newton's equations. Later, if there is a need to understand the
plane's friction, the physicist may add certain aspects of the jet plane's contour to the model. In

general, a scientist refines a model and retests its usefulness until it is sufﬁciently accurate.
| |
\ |
A programmer or a computing scientist should proceed like a s01entlst Since the representation

of data plays a central role in the work of a programmer, the key is to find' an accurate data
representation of the real-world information. The best way to get there in complicated situations
is to develop the representation in an iterative manner, starting with the’ essential elements and
adding more attributes when the current model is fulla un erstood

In this book, we have encountered 1terat1v reﬁa mént in many of our extended exercises. For
example, the exercise on moving pictures with simple circles and rectangles; later on we
developed programs for moving entire hsts of shapes. Similarly, we first introduced Web pages
as a list of words and embe ded Web pages in section 15.3 we refined the representation of
embedded Web pages. Fo “exercises, however, the refinement was built into the
presentation.

This section illustrates iterative refinement as a principle of program development. The goal is to
model a file system. A file system is that part of the computer that remembers programs and data
when the computer is turned off. We first discuss files in more detail and then iteratively develop
three data representations. The last part of the section suggests some programming exercises for
the final model. We will use iterative refinement again in later sections.

16.1 Data Analysis

When we turn a computer off, it should remember the functions and the data we worked on.
Otherwise we have to reenter everything when we turn it on again. Things that a computer is to
remember for a long time are put into files. A file is a sequence of small pieces of data. For our
purposes, a file resembles a list; we ignore why and how a computer stores a file in a permanent
manner.

-192-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Ihang {8) ! !n'rﬁ:-' 121 i
| read! (19)
part1 (99) | |part2 (52) | |pars3 (17) i Code (DIR) | Docs (DIR) -

read! (10]

bl

Figure 44: A sample directory tree

It is more important to us that, on most computer systems, the collection of files is organized in
directories.” Roughly speaking, a directory contains some files and some more directories. The
latter are called subdirectories and may contain yet more subdirectories aﬁd files, and so on. The
entire collection is collectively called a file system or a a’zrectory tree.— 4

Figure 44 contains a graphlcal sketch of a small dlrectgry?itre ‘. The tree's root directory is Ts. It

is the total size of all the files in the tree? How deep is the tree (how many levels does it
contain)?

16.2 Defining Data Classes and Refining Them

Let's develop a data representation for file systems using the method of iterative refinement. The
first decision we need to make is what to focus on and what to ignore.

Consider the directory tree in figure 44 and let's imagine how it is created. When a user first
creates a directory, it is empty. As time goes by, the user adds files and directories. In general, a
user refers to files by names but thinks of directories as containers of other things.

Model 1: Our thought experiment suggests that our first and most primitive model should focus
on files as atomic entities, say, a symbol that represents a file's name, and on the directories'
nature as containers. More concretely, we should think of a directory as just a list that contains
files and directories.

All of this suggests the following two data definitions:

-193-

X -
FlyHeart.com

TEAM FLY PRESENTS



A file is a symbol.
A directory (short: dir) is either

1. empty;
2. (cons f d) where fisa fileanddisadir;or
3. (cons dl d2) where d1 and d2 are dirs.

The first data definition says that files are represented by their names. The second one captures
how a directory is gradually constructed by adding files and directories.

A closer look at the second data definition shows that the class of directories is the class of Web
pages of section 14.3. Hence we can reuse the template for Web-page processing functions to
process directory trees. If we were to write a function that consumes a directory (tree) and counts
how many files are contained, it would be identical to a function that counts the number of words
in a Web tree.

Exercise 16.2.1. Translate the file system in figure 44 into a Scheme representatlon according

to model 1. ; “

<~ \‘
Exercise 16.2.2. Develop the function how-many, which consumes a dir i@nd produces the
number of files in the dir tree.

Model 2: While the first data definition is familiar ¢ ( e’ésy g,,us'é; it obscures the nature of
directories. In particular, it hides the fact thata dlrect‘ is not just a collection of files and
directories but has several interesting attrlbute ‘ ] directories in a more faithful manner,
we must introduce a structure that collects 11 reIeVant properties of a directory. Here is a

minimal structure definition:

(define-struct

It suggests that a directory; as a name and a content; other attributes can now be added as needed.
The intention of the new definition is that a directory has two attributes: a name, which is a
symbol, and a content, which is a list of files and directories. This, in turn, suggests the following
data definitions:

A directory (short: dir) is a structure:

(make-dir n c)
where n is a symbol and c is a list of files and directories.

A list-of-files-and-directories (short: LOFD) is either

1. empty;
2. (cons f d) where £ is a file and d is a LOFD; or
3. (cons dl d2) where d1isadir and d2 is a LOFD.

-194-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Since the data definition for dir refers to the definition for LorDs, and the definition for LoFDS
refers back to that of dirs, the two are mutually recursive definitions and must be introduced
together.

Roughly speaking, the two definitions are related like those of parent and 1ist-of-children
in section 15.1. This, in turn, means that the design recipe for programming from section 15.2
directly applies to dirs and LoFDs. More concretely, to design a function that processes dirs, we
must develop templates for dir-processing functions and LoFD-processing functions in parallel.

Exercise 16.2.3. Show how to model a directory with two more attributes: a size and a systems
attribute. The former measures how much space the directory itself (as opposed to its files and
subdirectories) consumes; the latter specifies whether the directory is recognized by the
operating system.

Exercise 16.2.4. Translate the file system in figure 44 into a Scheme representation according
to model 2.

Exercise 16.2.5. Develop the function how-many, which consumes a dir accordmg to model 2

and produces the number of files in the dir tree. [ ;
~_ ||

Model 3: The second data definition refined the first one with the 1ntr0duct10n of attributes for

directories. Files also have attributes. To model those, we proce d just as above First, we define

a structure for files:

(define-struct file (name size content)
Second, we provide a data definition: |

A file is a structure:

(make-file n s x)
where n is a symbol, s is a number, and x is some Scheme value.

For now, we think of the content field of a file as set to empty. Later, we will discuss how to get
access to the data in a file.

Finally, let's split the content field of dirs into two pieces: one for a list of files and one for a
list of subdirectories. The data definition for a list of files is straightforward and relies on nothing
but the definition for files:

A list-of-files is either

1. empty, or
2. (cons s lof) where sisa file and lof is a list of files.

In contrast, the data definitions for dirs and its list of subdirectories still refer to each other and
must therefore be introduced together. Of course, we first need a structure definition for dirs
that has a field for files and another one for subdirectories:

(define-struct dir (name dirs files))

-195-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Here are the data definitions: A dir is a structure:

(make-dir n ds fs)
where n is a symbol, ds is a list of directories, and £s is a list of files.

A list-of-directories 1is either

1. empty Or
2. (cons s lod) where sisadir and lod is a list of directories.

This third model (or data representation) of a directory hierarchy captures the nature of a file
system as a user typically perceives it. With two structure definitions and four data definitions, it
is, however, far more complicated than the first model. But, by starting with a the simple
representation of the first model and refining it step by step, we have gained a good
understanding of how to work with this complex web of classes. It is now our job to use the
design recipe from section 15.2 for developing functions on this set of data definitions.
Otherwise, we cannot hope to understand our functions at all.

16.3 Refining Functions and Programs ‘

2 '}Dr,S‘qheme supports the teachpack dir.ss. It introduces the
two necessary structure d \ﬁmt ons and a function to create representations of directories
according to our third model

;; Create-dir : string -> dir

;; to create a representation of the directory that a-path specifies:
;7 1. Windows: (create-dir "c:\\windows")

;7 2. Mac: (create-dir "My Disk:")

;; 3. Unix: (create-dir "/home/scheme/")

(define (create-dir a-path) ...)

Use the function to create some small and large examples based on the directories in a real
computer. Warning: For large directory trees, DrScheme may need a lot of time to build a
representation. Use create-dir on small directory trees first. Do not define your own dir
structures.

Exercise 16.3.2. Develop the function how-many, which consumes a dir (according to model 3)
and produces the number of files in the dir tree. Test the function on the directories created in
exercise 16.3.1. Why are we confident that the function produces correct results?

-196-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 16.3.3. Develop the function du-dir. The function consumes a directory and
computes the total size of all the files in the entire directory tree. This function approximates a
true disk-usage meter in that it assumes that directories don't require storage.

Refine the function to compute approximate sizes for subdirectories. Let's assume that storing a
file and a directory in a dir structure costs 1 storage unit.

Exercise 16.3.4. Develop the function find?, which consumes a dir and a file name and
determines whether or not a file with this name occurs in the directory tree.

Challenge: Develop the function £ind. It consumes a directory d and a file name £. If (find? d
£) is true, it produces a path to the file; otherwise it produces false. A path is a list of directory
names. The first one is that of the given directory; the last one is that of the subdirectory whose
files list contains f. For example:

(find TS 'part3)
;5 expected value:
(list 'TS 'Text)
(find TS 'read!)
;; expected value:
(list 'TS) o~ | |
~ |

assuming Ts is defined to be the directory in figure 44.

Which read! file in figure 44 should £ind discover? Generalize the inction to return a list of
paths if the file name occurs more than once. Each path should lead to a different occurrence,
and there should be a path for each occurrence

called a folder.

! The picture explains Why‘fcomf) r scientists call such directories trees.

-197-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 17

Processing Two Complex Pieces of Data

On occasion, a function consumes two arguments that belong to classes with non-trivial data
definitions. In some cases, one of the arguments should be treated as if it were atomic; a
precisely formulated purpose statement typically clarifies this. In other cases, the two arguments
must be processed in lockstep. Finally, in a few rare cases, the function must take into account all
possible cases and process the arguments accordingly. This section illustrates the three cases
with examples and provides an augmented design recipe for the last one. The last section
discusses the equality of compound data and its relationship to testing; it is essential for
automating test suites for functions.

17.1 Processing Two Lists Simultaneously: Case 1

Consider the following contract, purpose statement, and header: <

;; replace-eol-with : list-of-numbers list—' A
;; to construct a new list by replacing €mpty in alopd with alon2
(define (replace-eol-with alonl alon2’ e \g

In this equation, L stands for an arbitrary list of numbers. Now suppose the first argument is not
empty. Then the purpose statement requires that we replace empty at the end of alon1 with

alon2:

(replace-eol-with (cons 1 empty) L)

;; expected value:

(cons 1 L)

(replace-eol-with (cons 2 (cons 1 empty)) L)

;7 expected value:

(cons 2 (cons 1 L))

(replace-eol-with (cons 2 (cons 11 (cons 1 empty))) L)
;; expected value:

(cons 2 (cons 11 (cons 1 L)))

Again, L stands for any list of numbers in these examples.

;7 replace-eol-with : list-of-numbers list-of-numbers -> list-of-numbers
;; to construct a new list by replacing empty in alonl with alon2

-198-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define (replace-eol-with alonl alon2)

(cond
((empty? alonl) alonZ2)
(else (cons (first alonl) (replace-eol-with (rest alonl) alon2)))))

Figure 45: The complete definition of replace-eol-with

The examples suggest that it doesn't matter what the second argument is -- as long as it is a list;
otherwise, it doesn't even make sense to replace empty with the second argument. This implies
that the template should be that of a list-processing function with respect to the first argument:

(define (replace-eol-with alonl alon2)

(cond
((empty? alonl) ...)
(else ... (first alonl) ... (replace-eol-with (rest alonl)
alon2) ... )))

The second argument is treated as it were an atomic piece of data.

Let's fill the gaps in the template, following the design recipe and using oﬁﬁ examples. [f alon1
is empty, replace-eol-with produces alon2 according to our examples. For the second cond-
clause, when alon1 is not empty, we must proceed by inspecting the avéii‘laiible expressions:

1. (first alonl) evaluates to the first item on the ist, and
replaces empty in (rest alonl) with

2. (replace-eol-with (rest alonl) alon

alon?2.

;7 expected v&
(cons 2 (cong 1

Here (first alonl)iSZ, fest alonl)is(cons 11 (cons 1 empty)),and(replace—eol—
with (rest alonl) alon2) 1S (cons 11 (cons 1 alon2)). We can combine 2 and the latter
with cons and can thus obtain the desired result. More generally,

(cons (first alonl) (replace-eol-with (rest alonl) alon2))
is the answer in the second cond-clause. Figure 45 contains the complete definition.

Exercise 17.1.1. In several exercises, we have used the Scheme operation append, which
consumes three lists and juxtaposes their items:

(append (list 'a) (list 'b 'c) (list 'd 'e 'f))
;7 expected value:
(list 'a 'b 'c 'd 'e 'f)

Use replace-eol-with to define our-append, which acts just like Scheme's append.

-199-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 17.1.2. Develop cross. The function consumes a list of symbols and a list of numbers
and produces all possible pairs of symbols and numbers.

Example:

(cross '(a b c) '"(1 2))

;7 expected value:

(list (list 'a 1) (list 'a 2) (list 'b 1) (list 'b 2) (list 'c 1) (list
'c 2))

17.2 Processing Two Lists Simultaneously: Case 2

In section 10.1, we developed the function hours->wages for the computation of weekly wages.
It consumed a list of numbers -- hours worked per week -- and produced a list of weekly wages.
We had based the function on the simplifying assumption that all employees received the same
pay rate. Even a small company, however, employs people at different rate levels. Typically, the
company's accountant also maintains two collections of information: a permanent one that,
among other things, includes an employee's personal pay-rate, and a temporary one that records
how much time an employee has worked during the past week. (]

here is the problem statement:

;; hours->wages : list-of-numbers lis
;; to construct a new list by miult
;; alonl and alon?2
;5 AssumpTION: the two llsts ar o
(define (hours- >wage

We can think of alon:
To get the list of weekly Wages
lists.

ust multiply the corresponding numbers in the two input

Let's look at some examples:

(hours->wages empty empty)

;; expected value:

empty

(hours->wages (cons 5.65 empty) (cons 40 empty))

;5 expected value:

(cons 226.0 empty)

(hours->wages (cons 5.65 (cons 8.75 empty))
(cons 40.0 (cons 30.0 empty)))

;7 expected value:

(cons 226.0 (cons 262.5 empty))

For all three examples the function is applied to two lists of equal length. As stated in the
addendum to the purpose statement, the function assumes this and, indeed, using the function
makes no sense if the condition is violated.

The condition on the inputs can also be exploited for the development of the template. Put more
concretely, the condition says that (empty? alonil) is true if, and only if, (empty? alon2) is
-200-

X -
FlyHeart.com

TEAM FLY PRESENTS



true; and furthermore, (cons? alonl) is true if, and only if, (cons? alon2) is true. In other
words, the condition simplifies the design of the template's cond-structure, because it says the
template is similar to that of a plain list-processing function:

(define (hours->wages alonl alon?2)
(cond
((empty? alonl) ...)
(else ... )))

In the first cond-clause, both alon1 and alon2 are empty. Hence no selector expressions are
needed. In the second clause, both alonl and alon2 are constructed lists, which means we need
four selector expressions:

(define (hours->wages alonl alon2?)

(cond
((empty? alonl) ...)
(else
(first alonl) ... (first alon2)
(rest alonl) ... (rest alon2) ... )))

Finally, because the last two are lists of equal length, they make up a natuﬁal candidate for the
natural recursion of hours->wages: -

(define (hours->wages alonl alon2)
(cond
((empty? alonl) ...)
(else

(first alonl) (flrst\alo

.

hours—>wageé§) list-of-numbers list-of-numbers -> list-of-numbers
;; to construct a new list by multiplying the corresponding items on
;; AssumpTIiOoN: the two lists are of equal length

;; alonl and alon2

(define (hours->wages alonl alon2)

(cond
((empty? alonl) empty)
(else (cons (weekly-wage (first alonl) (first alon2))
(hours->wages (rest alonl) (rest alon2))))))
;; weekly-wage : number number -> number

;; to compute the weekly wage from pay-rate and hours-worked
(define (weekly-wage pay-rate hours-worked)
(* pay-rate hours-worked))

Figure 46: The complete definition of hours-->wage

To define the function from here, we follow the design recipe. The first example implies that the
answer for the first cond-clause is empty. In the second one, we have three values available:

-201-

X -
FlyHeart.com

TEAM FLY PRESENTS



I. (first alonl) evaluates to the first item on the list of pay-rates;

2. (first alon2) evaluates to the first item on the list of hours worked; and

3. (hours->wages (rest alonl) (rest alon2)) computes the list of weekly wages for
the remainders of alonl and alon2.

We merely need to combine these values to get the final answer. More specifically, given the
purpose statement, we must compute the weekly wage for the first employee and construct a list
from that wage and the rest of the wages. This suggests the following answer for the second
cond-clause:

(cons (weekly-wage (first alonl) (first alon2))
(hours->wages (rest alonl) (rest alon2)))

The auxiliary function weekly-wage consumes the two first items and computes the weekly
wage. Figure 46 contains the complete definitions.

Exercise 17.2.1. In the real world, hours->wages consumes lists of employee structures and
lists of work structures. An employee structure contains an employee's name, social security
number, and pay rate. A work structure contains an employee's name and the number of hours
worked in a week. The result is a list of structures that contain the name of fthe employee and the
weekly wage. -

of data. Pr0V1de the necessary

Modify the function in figure 46 so that it works on these :
recipe to. \guide the modification

structure definitions and data definitions. Use the desig
process. ‘

Exercise 17.2.2. Develop the function. 2ip, : h\ébmblnés a list of names and a list phone
numbers into a list of phone records. Assumlng e following structure definition:

(deflne—structwpﬂw‘ name number)) ,

a phone record is construct\ d with (make-phone-record s n) where s is a symbol and n is a
number. Assume the lists are of equal length. Simplify the definition, if possible.

17.3 Processing Two Lists Simultaneously: Case 3

Here is a third problem statement, given as in the form of a function contract, purpose statement,
and header:

;7 list-pick : list-of-symbols N[>= 1] -> symbol

;; to determine the nth symbol from alos, counting from 1;
;7 signals an error if there is no nth item

(define (list-pick alos n) ...)

That is, the problem is to develop a function that consumes a natural number and a list of
symbols. Both belong to classes with complex data definitions, though, unlike for the previous
two problems, the classes are distinct. Figure 47 recalls the two definitions.

The data definitions:

-202-

X -
FlyHeart.com

TEAM FLY PRESENTS



A natural number [>= 1] (N[>= 1]) is either

1. 1or
2. (addl n) ifnisaN[>= 1].

A list-of-symbols is either

1. the empty list, empty, or
2. (cons s lof) where s is a symbol and 1of is a list of symbols.

Figure 47: Data definitions for list-pick

Because the problem is non-standard, we should ensure that our examples cover all important
cases. We usually accomplish this goal by picking one item per clause in the definition and
choosing elements from basic forms of data on a random basis. In this example, this procedure
implies that we pick at least two elements from 1ist-of-symbols and tw‘("ﬁ fromn[>= 17. Let's
choose empty and (cons 'a empty) for the former, and 1 and 3 for the latter But two choices
per argument means four examples total; after all, there is no 1mmed1ately QbVlOLlS connection
between the two arguments and no restriction in the contract: ~

(list-pick empty 1)

;; expected behavior:
(error 'list-pick "...")
(list-pick (cons 'a empty)
;7 expected value:
'a

(list-pick empty
;7 expected beh
(error 'listip
(list-pick (cons\
(

T

;; expected behavior:
error 'list-pick ™...")

Only one of the four results is a symbol; in the other cases, we see an error, indicating that the
list doesn't contain enough items.

The discussion on examples indicates that there are indeed four possible, independent cases that
we must consider for the design of the function. We can discover the four cases by arranging the
necessary conditions in a table format:

‘ empty? alos)‘(cons? alos)

‘ (>n 1)
The horizontal dimension of the table lists those questions that 1ist-pick must ask about the list

argument; the vertical dimension lists the questions about the natural number. Furthermore, the
partitioning of the table yields four squares. Each square represents the case when both the

-203-

X -
FlyHeart.com

TEAM FLY PRESENTS



condition on the horizontal and the one on the vertical are true. We can express this fact with
and-expressions in the squares:

‘ ‘(empty? alos) (cons? alos)

(= n 1) (and (= n 1) (and (= n 1)
(empty? alos)) (cons? alos))

>n 1) (and (> n 1) (and (> n 1)
(empty? alos)) (cons? alos))

It is straightforward to check that for any given pair of arguments exactly one of the four
composite claims must evaluate to true.

Using our cases analysis, we can now design the first part of the template, the conditional

1

expression:

(define (list-pick alos n)

(cond
[(and (= n 1) (empty? alos))
[(and (> n 1) (empty? alos)) .
[(and (= n 1) (cons? alos)) .
[(and (> n 1) (cons? alos))

The cond-expression asks all four questions, thus di
add selector expressions to each cond-cl:

thus distinguishing all possibilities. Next we must
ise if possible:

(define (lis;;

(cond
[(and (= n \\empﬁy? alos))
[(and (> n 1) (empty? alos))
(subl n) . ]
[(and (= n 1) (cons? alos))
. (first alos) ... (rest alos)...]
[(and (> n 1) (cons? alos))
(subl n) ... (first alos) ... (rest alos) ...]))

For n, a natural number, the template contains at most one selector expression, which determines
the predecessor of n. For alos, it might contain two. In those cases where either (= n 1) or
(empty? alos) holds, one of the two arguments is atomic and there is no need for a
corresponding selector expression.

The final step of the template construction demands that we annotate the template with
recursions where the results of selector expressions belong to the same class as the inputs. In the
template for 1ist-pick, this makes sense only in the last cond-clause, which contains both a
selector expression for N[>= 1] and one for 1ist-of-symbols. All other clauses contain at most
one relevant selector expression. It is, however, unclear how to form the natural recursions. If we

-204-

X -
FlyHeart.com

TEAM FLY PRESENTS



disregard the purpose of the function, and the template construction step asks us to do just that,
there are three possible recursions:

1. (list-pick (rest alos) (subl n))
2. (list-pick alos (subl n))
3. (list-pick (rest alos) n)

Since we cannot know which one matters or whether all three matter, we move on to the next
development stage.

;7 list-pick : list-of-symbols N[>= 1] -> symbol

;; to determine the nth symbol from alos, counting from 1;
;; signals an error if there is no nth item

(define (list-pick alos n)

(cond
[(and (= n 1) (empty? alos)) (error 'list-pick "list too short")]
[(and (> n 1) (empty? alos)) (error 'list-pick "list too short")]
[(and (= n 1) (cons? alos)) (first alos)]
[(and (> n 1) (cons? alos)) (list-pick (rest alos) (subl n))1]))

Figure 48: The complete definition of /ist-pick |

Following the design recipe, let us analyze each cond-c
proper answer is:

1. If (and (= n 1) (empty? alos)) héilds,i

\answer must be an application of error.
l\lst -pick was again asked to pick an item

2. If (and (> n 1)

If (and (= n 1.
item from som 1
item. It is the answer
4. For the final clause,if (and (> n 1) (cons? alos)) holds, we must analyze what the
selector expressions compute:

a. (first alos) selects the first item from the list of symbols;

b. (rest alos) is the rest of the list; and

C. (subl n) is one less that the original given list index.

Let us consider an example to illustrate the meaning of these expressions. Suppose 1ist-
pick is applied to (cons 'a (cons 'b empty)) and 2:

(list-pick (cons 'a (cons 'b empty)) 2)

The answer must be 'b, (first alos) 1S 'a, and (subl n) 1S 1. Here is what the three
natural recursions would compute with these values:

d. (list-pick (cons 'b empty) 1) produces 'b, the desired answer;
€. (list-pick (cons 'a (cons 'b empty)) 1) evaluatesto 'a, whichisa
symbol, but the the wrong answer for the original problem; and

-205-

X -
FlyHeart.com

TEAM FLY PRESENTS



f. (list-pick (cons 'b empty) 2) signals an error because the index is larger
than the length of the list.

This suggests that we use (1ist-pick (rest alos) (subl n)) asthe answer in the
last cond-clause. But, example-based reasoning is often treacherous, so we should try to
understand why the expression works in general.

Recall that, according to the purpose statement,

(list-pick (rest alos) (subl n))

picks the (n - 1)st item from (rest alos).In other words, for the second application, we
have decreased the index by 1, shortened the list by one item, and now look for an item.
Clearly, the second application always produces the same answer as the first one,
assuming alos and n are *‘compound" values. Hence our choice for the last clause is
truly justified.

Exercise 17.3.1. Develop 1ist-pick0, which picks items from a list like 1ist-pick but starts
counting at 0. (]

Examples: \ \ |

(symbol=? (list-pickO0 (list 'a
'd)

(list-pick0 (list 'a 'b 'c 'd)

;; expected behavior: <

(error 'list-pickO "the llst is

(and (= n 1) (empty? alos))

or

(and (> n 1) (empty? alos))

evaluates to true, the answer is an error. We can translate this observation into a simpler cond-
expression:

(define (list-pick alos n)

(cond
[(or (and (= n 1) (empty? alos))
(and (> n 1) (empty? alos))) (error 'list-pick "list too short")]
[(and (= n 1) (cons? alos)) (first alos)]
[(and (> n 1) (cons? alos)) (list-pick (rest alos) (subl n))]))

The new expression is a direct transliteration of our English observation.

-206-

X -
FlyHeart.com

TEAM FLY PRESENTS



To simplify this function even more, we need to get acquainted with an algebraic law concerning
booleans:

(or (and conditionl a-condition)
(and condition2 a-condition))
= (and (or conditionl condition2)
a-condition)

The law is called de Morgan's law of distributivity. Applying it to our function yields the
following:

(define (list-pick n alos)

(cond
[(and (or (= n 1) (> n 1))
(empty? alos)) (error 'list-pick "list too short")]
[(and (= n 1) (cons? alos)) (first alos)]
[(and (> n 1) (cons? alos)) (list-pick (rest alos) (subl n))]))
Now consider the first part of the condition: (oxr (= n 1) (> n 1)). Because n belongs to

N[>= 1], the condition is always true. But, if we replace it with t rue we get

P 1

(and true o~ ‘
(empty? alos)) N

(define (list-pick alos n)

(cond ~ S
[ (empty? alos) (error 'List-pic
[(and (= n 1) (cons? alog)) (£ alos

\

[(and (> n 1) (cons? alos) t-pick (rest alos) (subl n))]))

1

which is already signjﬁcé ly s pfér than that in figure 48.

Still, we can do even bett\e\r\:\than that. The first condition in the latest version of 1ist-pick
filters out all those cases when alos is empty. Hence (cons? alos) in the next two clauses is
always going to evaluate to t rue. If we replace the condition with t rue and simplify the and-
expressions, we get the simplest possible version of 1ist-pick, which is displayed in figure 49.
While this last function is simpler than the original, it is important to understand that we
designed both the original and the simplified version in a systematic manner and that we can
therefore trust both. If we try to find the simple versions directly, we sooner or later fail to
consider a case and produce flawed functions.

;; list-pick : list-of-symbols N[>= 1] -> symbol

;; to determine the nth symbol from alos, counting from 1;
;7 signals an error if there is no nth item

(define (list-pick alos n)

(cond
[ (empty? alos) (error 'list-pick "list too short")]
[(=n 1) (first alos)]
[(>n 1) (list-pick (rest alos) (subl n))1))

Figure 49: The simplified definition of /ist-pick

-207-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 17.4.1. Develop the function replace-eol-with following the strategy of
section 17.2. Then simplify it systematically.

Exercise 17.4.2. Simplify the function 1ist-pick0 from exercise 17.3.1 or explain why it can't
be simplified.

17.5 Designing Functions that Consume Two Complex
Inputs

On occasion, we will encounter problems that require functions on two complex classes of inputs.
The most interesting situation occurs when both inputs are of unknown size. As we have seen in
the first three subsections, we may have to deal with such functions in thre’é different ways.

The proper approach to this problem is to follow the general demgn rempé In particular, we must

conduct a data analysis and we must define the relevant classes ‘of data. Then we can state the
contract and the purpose of the function, which, in turn, put: us'in a posmon ‘where we can think
ahead. Before we continue from this point, we should decide whicl One of the following three
situations we are facing:

1. In some cases, one of the paramete s plays a domlnant role. Conversely, we can think of
one of the parameters as an atomi ce of data as far as the function is concerned.

2. In some other cases, the two parameters are synchronized. They must range over the
same class of vz ; must have the same structure. For example, if we are given
two lists, they must ‘have the same length. If we are given two Web pages, they must have
the same length, and where one of them contains an embedded page, the other one does,
too. If we decide that the two parameters have this equal status and must be processed in
a synchronized manner, then we can pick one of them and organize the function around it.

3. Finally, in some rare cases, there may not be any obvious connection between the two
parameters. In this case, we must analyze all possible cases before we pick examples and
design the template.

For the first two cases, we use an existing design recipe. The last case deserves some special
consideration.

After we have decided that a function falls into the third category but before we develop
examples and the function template, we develop a two-dimensional table. Here is the table for
list-pick again:

‘_‘alos ‘
[ [
n[ =D |

empty? alos) ‘(cons? alos)

-208-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



(o= o]
i

Along the horizontal direction we enumerate the conditions that recognize the subclasses for the
first parameter, and along the vertical direction we enumerate the conditions for the second
parameter.

The table guides the development of both the set of function examples and the function template.
As far as the examples are concerned, they must cover all possible cases. That is, there must be
at least one example for each cell in the table.

As far as the template is concerned, it must have one cond-clause per cell. Each cond-clause, in
turn, must contain all feasible selector expressions for both parameters. If one of the parameters
is atomic, there is no need for a selector expression. Finally, instead of a single natural recursion,
we might have several. For 1ist-pick, we discovered three cases. In general, all possible
combinations of selector expressions are candidates for a natural recursion. Because we can't
know which ones are necessary and which ones aren't, we write them all down and pick the
proper ones for the actual function definition. d

In summary, the design of multi-parameter functions is just a Varlatlon on ‘the old design-recipe
theme. The key idea is to translate the data definitions into a. ble that shows all feasible and
interesting combinations. The development of function "Xamples nd the template exploit the
table as much as possible. Filling in the gaps in thete plate takes. practlce just like anything
else. ‘

17.6 _Exercises on Pmces‘siiing wo Complex Inputs

Exercise 17.6.1. Develop the ction merge. It consumes two lists of numbers, sorted in
ascending order. It produces a single sorted list of numbers that contains all the numbers on both
inputs lists (and nothing else) A number occurs in the output as many times as it occurs on the
two input lists together. )

Examples:

(merge (list 1 3 5 7 9) (list 0 2 4 6 8))

;5 expected value:

(list 0 1 2 3456 7 8 9)

(merge (list 1 8 8 11 12) (list 2 3 4 8 13 14))
;7 expected value:

(list123488811121314);

Exercise 17.6.2. The goal of this exercise is to develop a version of the Hangman game of
section 6.7 for words of arbitrary length.

Provide a data definition for representing words of arbitrary length with lists. A letter is
represented with the symbols 'a through 'z plus '

-209-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



Develop the function reveal-1ist. It consumes three arguments:

1. the chosen word, which is the word that we have to guess;
2. the status word, which states how much of the word we have guessed so far; and
3. aletter, which is our current guess.

It produces a new status word, that is, a word that contains ordinary letters and ' . The fields in
the new status word are determined by comparing the guess with each pair of letters from the
status word and the chosen word:

1. If the guess is equal to the letter in the chosen word, the guess is the corresponding letter
in the new status word.

2. Otherwise, the new letter is the corresponding letter from the status word.

Test the function with the following examples:

l. (reveal-list (list 't 'e 'a) (list ' ‘'e ') 'u)
2. (reveal-list (list 'a 'l 'e) (list 'a ' ') 'e)
3. (reveal-list (list 'a 'l 'l) (list ' ' ' ) 'l) d

First determine what the result should be.

The function hangman-1ist chooses a w ) ran ‘omly and pops up a window with a choice
menu for letters. Choose letters ans ';When ready, click on the Check button to see whether your
guess is correct. EIlJO

Exercise 17.6.3. In a factory, employees punch time cards as they arrive in the morning and
leave in the evening. In the modern age of electronic punch cards, a punch card contains an
employee number and the number of hours worked. Also, employee records always contain the
name of the employee, an employee number, and a pay rate.

Develop the function hours->wages2. The function consumes a list of employee records and a
list of (electronic) punch cards. It computes the weekly wage for each employee by matching the
employee record with a punch card based on employee numbers. If a pair is missing or if a pair's
employee numbers are mismatched, the function stops with an appropriate error message.
Assume that there is at most one card per employee and employee number.

Hint: An accountant would sort the two lists by employee number first.

Exercise 17.6.4. A linear combination is the sum of many linear terms, that is, products of
variables and numbers. The latter are called coefficients in this context. Here are some examples:

bz
Bex +17.3y
Gex +17-y+3:-2

-210-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



In all three examples, the coefficient of x is 5, that of y is 17, and the one for z is 3.

If we are given values for variables, we can determine the value of a polynomial. For example, if
x =10, the value of 5 - x is 50; if x = 10 and y = 1, the value of 5 - x + 17 - y is 67; and if x = 10, y
=1,and z= 2, the value of 5 - x+ 17 - y + 3 - zis 73.

In the past, we would have developed functions to compute the values of linear combinations for
specific values. An alternative representation is a list of its coefficients. The above combinations
would be represented as:

(list 5)
(list 5 17)
(list 5 17 3)

This representation assumes that we always agree on using variables in a fixed order.

Develop the function value. It consumes the representation of a polynomial and a list of
numbers. The lists are of equal length. It produces the value of the polynomial for these values.

Exercise 17.6.5. Louise, Jane, Laura, Dana, and Mary are sisters who would like to save money
and work spent on Christmas gifts. So they decide to hold a lottery that as‘s1gns to each one of
them a single gift recipient. Since Jane is a computer programmer, they ask her to write a
program that performs the lottery in an impartial manner. Of course, the program must not assign
any of the sisters to herself. >

Here is the definition of gi ft-pick. It consumes a list of istinct names (symbols) and randomly
picks one of those arrangements of the)ﬂst that do not agree with the original list at any position:

;7 gift-pick: 1i 3 \4 - sg~of-names
;; to pick a f \identity arrangement of names
(define (gift-
(random-pick™ \ \
(non-same na (axrangements names))))
Recall that arrangements (see exercise 12.4.2) consumes a list of symbols and produces the list
of all rearrangements of the items in the list.

Develop the auxiliary functions

1. random-pick : list-of-list-of-names -> list-of-names, which consumes a list
of items and randomly picks one of them as the result;

2. non-same : list-of-names list-of-list-of-names -> list-of-list-of-names,
which consumes a list of names . and a list of arrangements and produces the list of those
that do not agree with L at any position.

Two permutations agree at some position if we can extract the same name from both lists
by applying first and the same number of rest operations to both. For example, (1ist
'a 'b 'c)and (list 'c 'a 'b) donotagree,but (1ist 'a 'b 'c) and (list 'c
'b 'a) agree at the second position. We can prove that by applying rest followed by
first to both lists.

-211-

X -
FlyHeart.com

TEAM FLY PRESENTS



Follow the appropriate recipe in each case carefully.

Hint: Recall that (random n) picks a random number between 0 and n-1 (compare with
exercise 11.3.1).

Exercise 17.6.6. Develop the function bNAprefix. The function takes two arguments, both lists
of symbols (only 'a, 'c, 'g, and 't occur in DNA, but we can safely ignore this issue here). The
first list is called a pattern, the second one a search-string. The function returns true if the
pattern is a prefix of the search-string. In all other cases, the function returns false.

Examples:

(DNAprefix (list 'a 't) (list 'a 't 'c))
(not (DNAprefix (list 'a 't) (list 'a)))
(DNApreflx (list 'a 't) (list 'a 't))

(not (DNAprefix (list 'a 'c 'g 't) (list 'a 'qg)))
(no (DNAprefix (list 'a 'a 'c 'c) (list 'a 'c)))

Simplify pNaprefix, if possible.

Modify pNaprefix so that it returns the first item beyond the pattern-in thew search-string if the
pattern is a proper prefix of the search-string. If the lists do not match or 1f the pattern is no

shorter than the search-string, the modified function should still return £ alse. Similarly, if the
lists are equally long and match, the result is still trued o

Examples:

(symbol=? (DNAprefix
IC)

(not (DNAprefix

(DNAprefix (1i

Can this variant of DﬁIApr £ix besimplified? If so, do it. If not, explain.

17.7 Extended E)“iﬂercise: Evaluating Scheme, Part 2

The goal of this section is to extend the evaluator of section 14.4 so that it can cope with function
applications and function definitions. In other words, the new evaluator simulates what happens
in DrScheme when we enter an expression in the Interactions window after clicking Execute.
To make things simple, we assume that all functions in the befinitions window consume one
argument.

Exercise 17.7.1. Extend the data definition of exercise 14.4.1 so that we can represent the
application of a user-defined function to an expression suchas (f (+ 1 1)) or (* 3 (g 2)).
The application should be represented as a structure with two fields. The first field contains the
name of the function, the second one the representation of the argument expression.

A full-fledged evaluator can also deal with function definitions.

Exercise 17.7.2. Provide a structure definition and a data definition for definitions. Recall that a
function definition has three essential attributes:
-212-

X -
FlyHeart.com

TEAM FLY PRESENTS



1. the function's name,
2. the parameter name, and
3. the function's body.

This suggests the introduction of a structure with three fields. The first two contain symbols, the
last one a representation of the function's body, which is an expression.

Translate the following definitions into Scheme values:

1. (define (f x) (+ 3 x))

2. (define (g x) (* 3 x))

3. (define (h u) (f (* 2 u)))

4. (define (i v) (+ (* v v) (* v v)))
5. (define (k w) (* (h w) (i w)))

Make up more examples and translate them, too.

Exercise 17.7.3. Develop evaluate-with-one-def. The function consumes (the
representation of) a Scheme expression and (the representation of) a singl?’ffunction definition, p.
The remaining expressions from exercise 14.4.1 are evaluated as before. F ér (the representation

of) a variable, the function signals an error. For an applicatio the function P, evaluate-
with-one-def

1. evaluates the argument;
2. substitutes the value of the argu/ment‘ or the function parameter in the function's body;
and ‘ \ \
3. evaluates the new expression via re
4. (eval e~wi -on ~ )
5. a-fun-def)

For all other function applications, evaluate-with-one-def signals an error.

Exercise 17.7.4. Develop the function evaluate-with-defs. The function consumes (the
representation of) a Scheme expression and a list of (representations of) function definitions,
defs. The function produces the number that DrScheme would produce if we were to evaluate
the actual Scheme expression in the Interactions window and if the Definitions window
contained the actual definitions.

The remaining expressions from exercise 14.4.1 are evaluated as before. For an application of
the function P, evaluate-with-defs

evaluates the argument;

looks up the definition of p in defs;

3. substitutes the value of the argument for the function parameter in the function's body;
and

4. evaluates the new expression via recursion.

N —

Like DrScheme, evaluate-with-defs signals an error for a function application whose function
name is not on the list and for (the representation of) a variable.

-213-

X -
FlyHeart.com

TEAM FLY PRESENTS



17.8 Equality and Testing

Many of the functions we designed produce lists. When we test these functions, we must
compare their results with the predicted value, both of which are lists. Comparing lists by hand is
tedious and error-prone. Let's develop a function that consumes two lists of numbers and
determines whether they are equal:

;7 list=? : list-of-numbers list-of-numbers -> boolean
;; to determine whether a-list and another-1list

;; contain the same numbers in the same order

(define (list=? a-list another-list) ...)

The purpose statement refines our general claim and reminds us that, for example, shoppers may
consider two lists equal if they contain the same items, regardless of the order, but programmers
are more specific and include the order in the comparison. The contract and the purpose
statement also show that 1ist=> is a function that processes two complex values, and indeed, it
is an interesting case study.

Comparing two lists means looking at each item in both lists. This rules out designing 1ist=2
along the lines of replace-eol-with in section 17.1. At first glance, there is also no connection

between the two lists, which suggests that we should use the modiﬁié\dfdegi;gn recipe.

Let's start with the table:

(cons? a-list)

cons? another=lis

|

’(empty? another—list)
K

|

It has four cells, which implies

at we ced (at least) four tests and four cond-clauses in the
template. \

Here are five tests:

(list=? empty empty)
(not
(list=? empty (cons 1 empty)))
(not
(list=? (cons 1 empty) empty))
(list=? (cons 1 (cons 2 (cons 3 empty)))
(cons 1 (cons 2 (cons 3 empty))))
(not
(list=? (cons
(cons

(cons 2 (cons 3 empty)))
(cons 3 empty))))

1
1
The second and third show that 1ist=2> must deal with its arguments in a symmetric fashion. The
last two show how 1ist=? can produce true and false.

Three of the template's four cond-clauses contain selector expressions and one contains natural
recursions:

214-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define (list=? a-list another-1list)

(cond
[ (and (empty? a-list) (empty? another-list)) ...]
[ (and (cons? a-list) (empty? another-list))
(first a-1list) ... (rest a-list) ...]
[ (and (empty? a-list) (cons? another-list))
(first another-list) ... (rest another-list) ...]
[ (and (cons? a-list) (cons? another-1list))
first a-list) ... (first another-1list)
list=? (rest a-list) (rest another-1list))

(

(

(list=? a-list (rest another-list))
(list=? (rest a-list) another-list) ...]))

There are three natural recursions in the fourth clause because we can pair the two selector
expressions and we can pair each parameter with one selector expression.

From the template to the complete definition is only a small step. Two lists can contain the same
items only if they are both empty or constructed. This immediately implies true as the answer
for the first clause and false for the next two. In the last clause, we have two numbers, the first
of both lists, and three natural recursions. We must compare the two numbers. Furthermore,
(list=? (rest a-list) (rest another-list)) computes whether the rest of the two lists
are equal. The two lists are equal if, and only if, both conditions hold whﬂc‘h means we must
combine them with an and: ~ |

(define (list=? a-list another-1list)

(cond )
[ (and (empty? a-list) (empty? ano
and (cons? a-list) (

(

[( (
[ (and (empty? a-list)
[( (cons? a-list)
( (
(

Let us now take a second 101 k at the connection between the two parameters. The first
development suggests that the second parameter must have the same shape as the first one, if the
two lists are to be equal. Put differently, we could develop the function based on the structure of
the first parameter and check structure of the other one as needed.

The first parameter is a list of numbers, so we can reuse the template for list-processing functions:

(define (list=? a-list another-1list)
(cond
[ (empty? a-list) ...]
[ (cons? a-list)
(first a-list) ... (first another-list)
(list=? (rest a-list) (rest another-list)) ...]))

The only difference is that the second clause processes the second parameter in the same way as
the first one. This mimics the development of hours->wages in section 17.2.

Filling the gaps in this template is more difficult than for the first development of 1ist=>. If a-
list is empty, the answer depends on another-1ist. As the examples show, the answer is true

-215-

X -
FlyHeart.com

TEAM FLY PRESENTS



if, and only if, another-1ist is also empty. Translated into Scheme this means that the answer
inthefhstcond4ﬂauseis(empty? another-1list).

If a-11ist is not empty, the template suggests that we compute the answer from

1. (first a-list), the first number of a-1ist;
(first another-list), the first number on another-1ist; and

3. (list=? (rest a-list) (rest another-list)), which determines whether the rest
of the two lists are equal.

Given the purpose of the function and the examples, we now simply compare (first a-list)
and (first another-1list) and combine the result with the natural recursion in an and-
expression:

(and (= (first a-list) (first another-list))
(list=? (rest a-list) (rest another-1list)))

While this step appears to be simple and straightforward, the result is an improper definition. The
purpose of spelling out the conditions in a cond-expression is to ensure that all selector
expressions are appropriate. Nothing in the specification of 1ist=>2, howeK/er suggests that
another-1list is constructed if a-1ist is constructed. ‘*-

We can overcome this problem with an additional conditi ;

(define (list=? a-list another-1list)
(cond
[ (empty? a-list) (empty?.
[ (cons? a-list) ) RN
(and (cons? anothéf—li‘t

(and 6fi}st another-1ist))

‘é—list) (rest another-1list))))]1))

The additional condition is \(cons? another-1list), which means that 1ist=? produces false
if (cons? a-list) istrue and (cons? another-list) is empty. As the examples show, this is
the desired outcome.

In summary, 1ist=? shows that, on occasion, we can use more than one design recipe to develop
a function. The outcomes are different, though closely related; indeed, we could prove that the
two always produce the same results for the same inputs. Also, the second development
benefited from the first one.

Exercise 17.8.1. Test both versions of 1ist=>.

Exercise 17.8.2. Simplify the first version of 1ist=7. That is, merge neighboring cond-clauses
with the same result by combining their conditions in an or-expression; switch cond-clauses as
needed; and use else in the last clause of the final version.

Exercise 17.8.3. Develop sym-1ist=2. The function determines whether two lists of symbols
are equal.

-216-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 17.8.4. Develop contains-same-numbers. The function determines whether two lists
of numbers contain the same numbers, regardless of the ordering. Thus, for example,

(contains-same-numbers (list 1 2 3) (list 3 2 1))
evaluates to true.
Exercise 17.8.5. The class of numbers, symbols, and booleans are sometimes called atoms:*
An atom is either
1. anumber
2. aboolean

3. asymbol

Develop the function 1ist-equal?, which consumes two lists of atoms and determines whether
they are equal.

A comparison between the two versions of 1ist=2 suggests that the second one is easier to
understand than the first. It says that two compound values are equal if th wsecond is made from
the same constructor and the components are equal. In general, this idea i 1$ a good guide for the
development of other equality functions.

Let's look at an equality function for simple Web pages to confirm this conjecture:
;; web=? : web-page web-page —>J 
;; to determine whether a-wp and'
;; and contain the same . symbo S
(define (web=? a- wp

C fp have the same tree shape
e _same order

Recall the data deﬁqjt
A Web-page (short: WP) k

1. empty,
2. (cons s wp)

where s is a symbol and wp is a Web page; or
3. (cons ewp wp)

where both ewp and wp are Web pages.

The data definition has three clauses, which means that if we were to develop web=2 with the
modified design recipe, we would need to study nine cases. By using the insight gained from the
development of 1ist=7 instead, we can start from the plain template for Web sites:

(define (web=? a-wp another-wp)
(cond
[ (empty? a-wp) ...]
[ (symbol? (first a-wp))

(first a-wp) ... (first another-wp)
(web=7? (rest a-wp) (rest another-wp)) ...]
[else
(web=? (first a-wp) (first another-wp))
-217-
.~

FlyHeart.com

TEAM FLY PRESENTS



(web=? (rest a-wp) (rest another-wp)) ...]))

In the second cond-clause, we follow the example of hours->wages and 1ist=? again. That is,
we say that another-wp must have the same shape as a-wp if it is to be equal and process the
two pages in an analogous manner. The reasoning for the third clause is similar.

As we refine this template into a full definition now, we must again add conditions on another-
wp to ensure that the selector expressions are justified:

(define (web=? a-wp another-wp)
(cond
[ (empty? a-wp) (empty? another-wp) ]
[ (symbol? (first a-wp))

(and (and (cons? another-wp) (symbol? (first another-wp)))
(and (symbol=? (first a-wp) (first another-wp))
(web=7? (rest a-wp) (rest another-wp))))]
[else
(and (and (cons? another-wp) (list? (first another-wp)))
(and (web=? (first a-wp) (first another-wp))
(web=? (rest a-wp) (rest another—wp))))}))

In particular, we must ensure in the second and third clause that another ‘wp is a constructed list
and that the first item is a symbol or a list, respectively. Otherw1se the fuﬁdtlon is analogous to
1ist=7 and works in the same way.

“ y for 1mple Web pages. Develop (at
least) one example for each of the nine cases. Test w h these examples.

Exercise 17.8.7. Develop the functior PO h}Ch consumes two binary posn structures and
determines whether they are equal. -

Exercise 17.8.8. ng ]
determines whether they are equa

Exercise 17.8.9. Consider the following two, mutually recursive data definitions:

A Slist is either

1. empty
2. (cons s sl) where sisa sexpr and slisasSlist.

A Sexpr is either

1. anumber
2. aboolean
3. asymbol
4. aslist

Develop the function s1ist=?, which consumes two s1ists and determines whether they are
equal. Like lists of numbers, two s1ists are equal if they contain the same item at analogous
positions.

-218-

X -
FlyHeart.com

TEAM FLY PRESENTS



Now that we have explored the idea of equality of values, we can return to the original
motivation of the section: testing functions. Suppose we wish to test hours->wages from
section 17.2:

(hours->wages (cons 5.65 (cons 8.75 empty))
(cons 40 (cons 30 empty)))
= (cons 226.0 (cons 262.5 empty))

If we just type in the application into Interactions window or add it to the bottom of the
Definitions window, we must compare the result and the predicted value by inspection. For
short lists, like the ones above, this is feasible; for long lists, deep Web pages, or other large
compound data, manual inspection is error-prone.

Using equality functions like 1ist=2, we can greatly reduce the need for manual inspection of
test results. In our running example, we can add the expression

(list=>
(hours->wages (cons 5.65 (cons 8.75 empty))
(cons 40 (cons 30 empty)))
(cons 226.0 (cons 262.5 empty))) e

to the bottom of the Definitions window. When we click the Execute button now, we just
need to make sure that all test cases produce true as thelr results are d1splayed in the
Interactions window.

;; test-hours->wages : list—of—pu@ber
test-result A\
;; to test hours->wages
(define (test-hours->wages
(cond g
[ (list="
true] )
[else <~
(list "bad ﬁest result " a-list another-list expected-result)]))

Figure 50: A test function

istrof-numbers list-of-numbers ->

N AN e .
-1ist ‘another-list expected-result)

(hgugg gés a= istvénother—list) expected-result)

Indeed, we can go even further. We can write a test function like the one in figure 50. The class
of test-results consists of the value true and lists of four items: the string "bad test
result:" followed by three lists. Using this new auxiliary function, we can test hours->wages
as follows:

(test-hours->wages
(cons 5.65 (cons 8.75 empty))
(cons 40 (cons 30 empty))
(cons 226.0 (cons 262.5 empty)))

If something goes wrong with the test, the four-item list will stand out and specify precisely
which test case failed.

Testing with equal?: The designers of Scheme anticipated the need of a general equality
procedure and provide:

-219-

X -
FlyHeart.com

TEAM FLY PRESENTS



;5 equal? : any-value any-value -> boolean
;; to determine whether two values are structurally egquivalent
;; and contain the same atomic values in analogous positions

When equal? is applied to two lists, it compares them in the same manner as 1ist=2; when it
encounters a pair of structures, it compares their corresponding fields, if they are the same kind
of structures; and when it consumes a pair of atomic values, it compares them with =, symbo1=>2,
or boolean=2?, whatever is appropriate.

Guideline on Testing

Use equal> for testing (when comparisons of values are necessary).

Unordered Lists: On some occasions, we use lists even though the ordering of the items doesn't
play a role. For those cases, it is important to have functions such as contains-same-numbers
(see exercise 17.8.4) if we wish to determine whether the result of some function application
contains the proper items.

Exercise 17.8.10. Define a test function for replace-eol-with from sectlon 17.1 using equal>?
and formulate the examples as test cases using this function. ‘ ‘

“ Some people also include empty and keyboard characters (chars).

-220-

X -
FlyHeart.com

TEAM FLY PRESENTS



Section 18

Intermezzo 3: Local Definitions and Lexical
Scope

Programs do not just consist of single definitions. In many cases, a program requires the
definition of auxiliary functions or of functions with mutual references. Indeed, as we become
more experienced, we write programs that consist of numerous auxiliary functions. If we are not
careful, these large collections of functions overwhelm us. As the size of our functions grows, we
need to organize them so that we (and other readers) can quickly identify the relationships
between parts.

This section introduces local, a simple construct for organizing collections of functions. With
local, a programmer can group function definitions that belong together so that readers
immediately recognize the connection between the functions. Finally, the “il“qtroduction of local
also forces us to discuss the concept of variable binding. While the variable and function
definitions of Beginning Student Scheme already mtrodu bindings into a program, a good
understanding of 1ocal definitions is possible only W1t horough famlharlty of this concept.

18.2 Organizing Programs W1th xlocal

N N
A local-expression groups together an arbltrar ; ng sequence of definitions similar to those
found in the Definitions wmd w. Follo, our established rules, we first introduce the
syntax and then the semant ragmaucs of local-expressions.

Svntax of local

A local-expression is just another kind of expression:

<exp> = (local (<def—l> e <def—n>) <exp>)

As usual, <def-1> ... <def-n> is an arbitrarily long sequence of definitions (see figure 51) and
<exp> is an arbitrary expression. In other words, a local-expression consists of the keyword
local, followed by a sequence of definitions grouped with ( and ), followed by an expression.

<def>=(define (<var> <var> ...<var>) <exp>)

| (define <var> <exp>)
| (define-struct <var> (<var> ...<var>))

Figure 51: Scheme definitions

The keyword local distinguishes this new class of expressions from other expressions, just as
cond distinguishes conditional expressions from applications. The parenthesized sequence that

-221-

—
FlyHeart.com ¢4

TEAM FLY PRESENTS



follows local is referred to as the Locar periniTion . The definitions are called the LocaLLy perNED
variables, functions, or structures. All those in the Definitions window are called Top-LEVEL
periNiTIONS. Each name may occur at most once on the left-hand side, be it in a variable definition
or a function definition. The expression in each definition is called the riGHT-HAND SIDE expression.
The expression that follows the definitions is the soby.

Let us take a look at an example:

(local ((define (f x) (+ x 5))
(define (g alon)

(cond
[ (empty? alon) empty]
[else (cons (f (first alon)) (g (rest alon)))])))

(g (list 1 2 3)))

The locally defined functions are £ and g. The right-hand side of the first function definition is
(+ x 5); the second one is

(cond
[ (empty? alon) empty] A

[else (cons (f (first alon)) (g (rest alon)))]) ‘

Finally, the body of the local-expression is (g (list 1 2 3)).

1. (local ((define x (* y 3)))
(* % %)) VN
2. (local ((define
(cond PN
[ (zero?\ an) f:
felse (e
(deflne\\
(cond \ \
[ (zero? an) true]
[else (odd (subl an))])))
(even a-nat-num))
3. (local ((define (f x) (g x (+ x 1)))
(define (g x y) (£ (+ x ¥))))
(+ (£ 10) (g 10 20)))

(od@ﬁan)

Exercise 18.2.2. The following phrases are not syntactically legal:

1. (local ((define x 10)
(y (+ x x)))
y)
2. (local ((define (f x) (+ (* x x) (* 3 x) 15))
(define x 100)
(define fQ@100 (f x)))
f@100 x)
3. (local ((define (f x) (+ (* x x) (* 3 x) 14))
(define x 100)
(define £ (f x)))
f)

-222-

X -
FlyHeart.com

TEAM FLY PRESENTS



Explain why!

Exercise 18.2.3. Determine which of the following definitions or expressions are legal and
which ones are not:

1. (define A-CONSTANT
(not
(local ((define (odd an)
(cond
[(= an 0) false]
[else (even (- an 1))1))
(define (even an)
(cond
[(= an 0) true]
[else (odd (- an 1))1)))
(even a-nat-num))))
2. (+ (local ((define (f x) (+ (* x x) (* 3 x) 15))
(define x 100)
(define f@100 (f x)))
£@100)
1000)
3. (local ((define CONST 100) 1
(define f x (+ x CONST))) , N
(define (g x y z) (f (+ x (* y z))))) 1]

Explain why each expression is legal or illegal.

Semantics of local

The purpose of a local-expression is t(rdfaﬁne ariable, -a function, or a structure for the
evaluation of the body expreSSI n. Outside of the I cal-expression the definitions have no effect.
Consider the following express

(local ((define (f x

It defines the function £ durmg the evaluation of exp. The result of exp is the result of the entire
local-expression. Similarly,

(local ((define PI 3)) exp)
temporarily lets the variable p1 stand for 3 during the evaluation of exp.

We can describe the evaluation of local-expressions with a single rule, but the rule is extremely
complex. More specifically, the rule requires two steps in a hand-evaluation. First, we must
systematically replace all locally defined variables, functions, and structures so that the names do
not overlap with those used in the pefinitions window. Second, we move the entire sequence
of definitions to the top level and proceed as if we had just created a new function.

Here is the evaluation rule, stated symbolically:

def-1 ... def-n
E[ (local ((define (f-1 x) exp-1l) ... (define (f-n x) exp-n)) exp)]
def-1 ... def-n (define (f-1' x) exp-1') ... (define (f-n' x) exp-n')

-223-

X -
FlyHeart.com

TEAM FLY PRESENTS



Elexp']
For simplicity, the local-expression in this rule defines only one-argument functions, but it is
straightforward to generalize from here. As usual, the sequence def-1 ... def-n represents
top-level definitions.

The unusual part of the rule is the notation E [exp]. It represents an expression exp and its
context E. More specifically, exp is the next expression that must be evaluated; £ is called its
EVALUATION CONTEXT.

For example, the expression

(+ (local ((define (f x) 10)) (£ 13)) 5)

is an addition. Before we can compute its result, we must evaluate the two subexpressions to
numbers. Since the first subexpression is not a number, we focus on it:

(local ((define (f x) 10)) (f 13))
This local-expression must and can be evaluated, so ]

exp = (local ((define (f x) 10)ff%f;\\

On the right-hand side of the rule for 1ocal, we cansee
The primed names £-1"', , £-n' are new functlo
level definitions; the prlmes on the expressmn exp
expressions are structurally identical to €3

ral prim d names and expressions.
distinct from all other names in top-
exp-n"' indicate that these

,\éXp—'n but contain £-1' instead of £-1, etc.

The evaluation rule for local- p/” sgioﬂ s the most complex rule that we have encountered so
far, and indeed, it is the most complex rule that we will ever encounter. Each of the two steps is
important and serves-a distinct purp, se. Their purpose is best illustrated by a series of simple

examples.

The first part of the rule eliminates name clashes between names that are already defined in the
top-level environment and those that will be inserted there. Consider the following example:

(define y 10)
(+ vy
(local ((define y 10)
(define z (+ vy v)))
z))

The expression introduces a local definition for y, adds y to itself to get z, and returns the value
of z.

The informal description of local says that the result should be 30. Let's verify this with our rule.
If we simply added the definitions in local to the top level, the two definitions for y would clash.
The renaming step prevents this clash and clarifies which of the y's belong together:

= (define y 10)
(+ v (local ((define yl 10) (define z1 (+ y1 yl1))) zl))

-224-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define y 10)

(define y1 10)
(define z1 (+ yl yl))
(+ vy z1)

(define y 10)
(define y1 10)
(define z1 20)
(+ 10 z1)

(define y 10)
(define yl1 10)
(define z1 20)
(+ 10 z1)

(define y 10)
(define yl1 10)
(define z1 20)
(+ 10 20)

As expected, the result is 30. )
p
| \
Since local-expressions may occur inside of function bodies, renaming is mportant if such

functions are applied more than once. The following second example 111ustfates this point:

(define (D x vy)
(local ((define x2 (* x X))
(define y2 (* y y)))
(sart (+ x2 y2))))

(+ (D0 1) (D3 4)) A~

resultof (+ (D 0 1) ¢

As D computes its answer It 1ntr0duces two local variables: x2 and y2. Since D is applied twice, a
modified version of its body is evaluated twice and therefore its local definitions must be added
to the top-level twice. The renaming step ensures that no matter how often we lift such
definitions, they never interfere with each other. Here is how this works:

= (define (D x vy)
(local ((define x2 (* x X))
(define y2 (* y y)))
(sgrt (+ x2 y2))))
(+ (local ((define x2 (* 0 0))
(define y2 (* 1 1)))
(sgqrt (+ x2 y2)))
(D 3 4))

The expression (D 0 1) is evaluated according to the regular rules. Now we rename and lift the
local definitions:

= (define (D x y)
(local ((define x2 (* x X))
(define y2 (* y y)))
(sart (+ x2 y2))))
(define x21 (* 0 0))

-225-

X -
FlyHeart.com

TEAM FLY PRESENTS



(define y21 (* 1 1))
(+ (sgrt (+ x21 y21))
(D 3 4))

From here, the evaluation proceeds according to the standard rules until we encounter a second
nested local-expression in the expression that we are evaluating:

= (define (D x vy)
(local ((define x2 (* x X))
(define y2 (* y y)))
(sgrt (+ x2 y2))))
(define x21 0)
(define y21 1)
(+ 1 (local ((define x2 (* 3 3))
(define y2 (* 4 4)))
(sgrt (+ x2 y2))))
= (define (D x y)
(local ((define x2 (* x X))
(define y2 (* y y)))
(sgrt (+ x2 y2))))
(define x21 0)
(define y21 1)
(define x22 9) ‘
(define y22 16) St ‘
(+ 1 (sgrt (+ x22 y22))) N **\%\

By renaming x2 and y2 again, we avoided clashes. F rani?her% fh:é\evglkrl;atioh of the expression is
straightforward: RN

(+ 1 (sgrt (+ x22 y22)))
= (+ 1 (sqrt (+ 9 y22))) 0,
= (+ 1 (sgrt (+ 9 16)))
= (+ 1 (sqrt 25))
= (+ 1 5)
6

The result is 6, as expecte\d;“—{
Exercise 18.2.4. Since local definitions are added to the Definitions window during an
evaluation, we might wish to try to see their values by just typing in the variables into the
Interactions window. Is this possible? Why or why not?

Exercise 18.2.5. Evaluate the following expressions by hand:

1. (local ((define (x y) (* 3 vy)))
(* (x 2) 5))
2. (local ((define (f c) (+ (* 9/5 ¢c) 32)))
(- (£ 0) (£ 10)))
3. (local ((define (odd? n)
(cond

[ (zero? n) false]
[else (even? (subl n))]))
(define (even? n)
(cond
[ (zero? n) true]
[else (odd? (subl n))]l)))
(even? 1))

-226-

= _—
FlyHeart.com

TEAM FLY PRESENTS



4. (+ (local ((define (f x) (g (+ x 1) 22))
(define (g x y) (+ x y)))

(£ 10))
555)
5. (define (h n)
(cond
[(=n 0) empty]
[else (local ((define r (* n n)))
(cons r (h (= n 1))))1))

(h 2)

The evaluations should show all 1ocal-reductions.

Pragmatics of local, Part 1

The most important use of local-expressions is to eNcapsuLaTE a collection of functions that serve
one purpose. Consider for an example the definitions for our sort function from section 12.2:

;; sort : list-of-numbers -> list-of-numbers
(define (sort alon)
(cond A
[ (empty? alon) empty] |
[ (cons? alon) (insert (first alon) (sort (rest< aion‘ 1))

;; insert : number list-of-numbers (sorted) \list-of- numbers
(define (insert an alon) ;
(cond
[ (empty? alon) (list an)]
[else (cond
[(> an (first alon))

[else (cons (first alg

The first definition defines. “se, ai
inserts a number into aSorted i \ of nu f bers. The first one uses the second one to construct the
result from a natural 1 recursmn a\‘sgrted version of the rest of the list, and the first item.

The two functions together f{irm the program that sorts a list of numbers. To indicate this
intimate relationship between the functions, we can, and should, use a local-expression.
Specifically, we define a program sort that immediately introduces the two functions as
auxiliary definitions:

;; sort : list-of-numbers -> list-of-numbers
(define (sort alon)
(local ((define (sort alon)

(cond
[ (empty? alon) empty]
[ (cons? alon) (insert (first alon)

(sort (rest alon)))]))
(define (insert an alon)

(cond
[ (empty? alon) (list an)]
[else (cond

[(> an (first alon)) (cons an alon) ]
[else (cons (first alon)
(insert an (rest alon)))]1)1)))
(sort alon)))

-227-

X -
FlyHeart.com

TEAM FLY PRESENTS



Here the body of local-expressions simply passes on the argument to the locally defined function
sort.

Guideline on the Use of local

Develop a function following the design recipes. If the function requires the use of auxiliary
definitions, group them in a local-expression and put the local-expression into a new function
definition. The body of the 1ocal should apply the main function to the arguments of the newly
defined function.

Exercise 18.2.6. Evaluate (sort (list 2 1 3)) by hand until the locally defined sort
function is used. Do the same for (equal? (sort (list 1)) (sort (list 2))).

Exercise 18.2.7. Use a local expression to organize the functions for moving pictures from
section 10.3.

Exercise 18.2.8. Use a 1ocal expression to organize the functions for drawing a polygon in
figure 34. p
| \

Exercise 18.2.9. Use a local expression to organize the funct10ns for rebrrangmg words from
section 12.4.

Exercise 18.2.10. Use a 1ocal expression to orgamze
descendants from section 15.1.

Pragmatics of local, Part 2

Suppose we need a functio
precise, assume we have'
pair of values:

(define-struct sta:}(name instrument))

A star (record) is a structure:

(make-star s t)
where s and t are symbols.

Here is an example:

(define alos
(list (make-star 'Chris 'saxophone)
(make-star 'Robby 'trumpet)
(make-star 'Matt 'violin)
(make-star 'Wen 'guitar)
(make-star 'Matt 'radio)))

This list contains two occurrences of 'Matt. So, if we wanted to determine the instrument that
goes with the last occurrence of 'Matt, we would want 'radio. For 'Wen, on the other hand, our

-228-

X -
FlyHeart.com

TEAM FLY PRESENTS



function would produce 'guitar. Of course, looking for the instrument of 'kKate should yield
false to indicate that there is no record for 'Kate.

Let's write down a contract, a purpose statement, and a header:

;; last-occurrence : symbol list-of-star -> star or false
;; to find the last star record in alostars that contains s in name field
(define (last-occurrence s alostars) ...)

The contract is unusual because it mentions two classes of data to the right of the arrow: star
and false. Although we haven't seen this kind of contract before, its meaning is obvious. The
function may produce a star or false.

We have already developed some examples, so we can move directly to the template stage of our
design recipe:

(define (last-occurrence s alostars)

(cond
[ (empty? alostars) ...]
[else ... (first alostars) ... (last-occurrence s (rest
alostars)) ...])) ||

The real problem with this function, of course, shows up onl fyvhen we want to fill in the gaps in
this template. The answer in the first case is false, per spe 1ﬁcat10n How to form the answer in
the second case is far from clear. Here is what we have

l. (first alostars) is the first star record on the given list. If its name field is equal to s,
it may or may not be the final result. It depends on the records in the rest of the list.

2. (last-occurrence s (rest ) evaluates to one of two things: a star record
with s as the name,ﬂﬁel’” the first case, the star record is the result; in the
second case, the esult i 11 se or the first record.

The second point implies tt
check whether it is a star ora boolean, and second, to use it as the answer if itis a star.

The dual-use of the natural recursion is best expressed with a local-expression:

(define (last-occurrence s alostars)
(cond
[ (empty? alostars) false]
[else (local ((define r (last-occurrence s (rest alostars))))
(cond
[ (star? r) r]

1))

The nested local-expression gives a name to the result of the natural recursion. The cond-
expression uses it twice. We could eliminate the local-expression by replacing r with the right-
hand side:

(define (last-occurrence s alostars)
(cond
[ (empty? alostars) false]
[else (cond

-229-

X -
FlyHeart.com

TEAM FLY PRESENTS



[ (star? (last-occurrence s (rest alostars)))
(last-occurrence s (rest alostars)) ]

1))

But even a superficial glance shows that reading a natural recursion twice is difficult. The
version with local is superior.

From the partially refined template it is only a short step to the full definition:

;; last-occurrence : symbol list-of-star -> star or false
;; to find the last star record in alostars that contains s in name field
(define (last-occurrence s alostars)
(cond
[ (empty? alostars) false]
[else (local ((define r (last-occurrence s (rest alostars))))
(cond
[ (star? r) r]
[ (symbol=? (star-name (first alostars)) s) (first alostars)]
[else false]))]))

The second clause in the nested cond-expression compares the first record's name field with s if
r is not a star record. In that case, there is no record with the matching name in the rest of the
list, and, if the first record is the appropriate one, it is the result. OtHéijséJ the entire list does
not contain the name we're looking for and the result is false

Exercise 18.2.11. Evaluate the following test by han

(last-occurrence 'Matt <
(list (make-star 'Matt 'violin
(make-star 'Matt 'radio

How many local-expressjog‘é

Exercise 18.2.12. Consider th /;11'6 ing function definition:
;; max non—emptylion -> number

;; to determine the largest number on alon
(define (max alon)

(cond
[ (empty? (rest alon)) (first alon)]
[else (cond

[ (> (first alon) (max (rest alon))) (first alon)]
[else (max (rest alon))])]))

Both clauses in the nested cond-expression compute (max (rest an-inv)), which is therefore
a natural candidate for a local-expression. Test both versions of max with

(list 1 2 3456 78 9 10 11 12 13 14 15 16 17 18 19 20)
Explain the effect.

Exercise 18.2.13. Develop the function to-blue-eyed-ancestor. The function consumes a
family tree (£tn) (see section 14.1) and produces a list that explains how to get to a blue-eyed
ancestor. If there is no blue-eyed ancestor, the function produces false.

-230-

X -
FlyHeart.com

TEAM FLY PRESENTS



The function's contract, purpose statement, and header are as follows:

;7 to-blue-eyed-ancestor : ftn -> path or false
;7 to compute the path from a-ftn tree to a blue-eyed ancestor
(define (to-blue-eyed-ancestor a-ftn) ...)

A path is a list of ' father and 'mother, which we call a direction. Here are the two data
definitions:

A direction is either

1. the symbol 'father or
2. the symbol 'mother .

A path is either

1. empty Or
2. (cons s los) where s is a direction and 1os is a path.

The empty path indicates that a-ftn has 'blue in the eyes field. If the ﬁnéjk item is 'mother, we
may search in the mother's family tree for a blue-eyed ancestor using the Lie‘st of the path.

Similarly, we search in the father's family tree if the first 1temfls father and use the rest of the
path for further directions.

Examples:

l. (to-blue-eyed-ancestor Gustav produces st 'mother) for the family tree in
figure 35;

2. (to-blue- eyed anc

3. if we added ¢ ne

(to—blue—eyed

nda uces £alse in the same setting; and
ake child Gustav Eva 'Gustav 1988 'hazel))then
Ijl,a'f Would yleld list 'father 'mother).

Build test cases from these‘{‘éi‘iamples. Formulate them as boolean expressions, using the strategy
of section 17.8.

Backtracking: The functions last-occurrence and to-blue-eyed-ancestor produce two
kinds of results: one to indicate a successful search and another one to indicate a failure. Both are
recursive. If a natural recursion fails to find the desired result, each tries to compute a result in a
different manner. Indeed, to-blue-eyed-ancestor may use another natural recursion.

This strategy of computing an answer is a simple form of Backtracking. In the world of data that
we have dealt with so far, backtracking is simple and just a device to save computing steps. It is
always possible to write two separate recursive functions that accomplish the same purpose as
one of the backtracking functions here.

We will take an even closer look at backtracking in section 28. Also, we will discuss counting
computing steps in intermezzo 5.

Exercise 18.2.14. Discuss the function find from exercise 15.3.4 in terms of backtracking.

-231-

X -
FlyHeart.com

TEAM FLY PRESENTS



Pragmatics of local, Part 3

Consider the following function definition:

;; multl0 : list-of-digits -> list-of-numbers

;7 to create a list of numbers by multiplying each digit on alod
;7 by (expt 10 p) where p is the number of digits that follow
(define (multlO alod)

(cond
[ (empty? alod) 0]
[else (cons (* (expt 10 (length (rest alod))) (first alod))

(multl0 (rest alod)))]))
Here is a test:
(equal? (multlO (list 1 2 3)) (list 100 20 3))
Clearly, the function could be used to convert a list of digits into a number.

A small problem with the definition of mu1t10 is the computation of the ﬁrst item of the result in
the second clause. It is a large expression and doesn't quite correspond to the purpose statement.

By using a local-expression in the second clause, we can introduce 'names\ for some intermediate
values in the computation of the answer:

;; multl0 : list-of-digits -> list-of- nu/ber \ N

;; to create a list of numbers by mulf g eac;/ git on alod

;7 by (expt 10 p) where p is the Qumb ligits that follow

(define (multlO0 alon) \
(cond

[ (empty? alon)

empty]

a-digit) (multlO (rest alon))))l1))
The use of names helps us understand the expression when we read the definition again because
we can study one local-definition at a time.

The use of 1ocal for such cases is most appropriate when a value is computed twice as, for
example, the expression (rest alon) inmult10. By introducing names for repeated expressions,
we might also avoid some (small) effort on DrScheme's side:

(define (multlO alon)
(cond
[ (empty? alon) empty]
[else (local ((define a-digit (first alon))
(define the-rest (rest alon))
(define p (length the-rest)))

(cons (* (expt 10 p) a-digit) (multlO the-rest)))]))

For the programs that we have developed, this third usage of local is hardly ever useful. An
auxiliary function is almost always better. We will, however, encounter many different styles of
functions in the remaining parts of the book and with them the opportunity, and sometimes the
necessity, to use local-expressions like the one for mu1t10.

-232-

X -
FlyHeart.com

TEAM FLY PRESENTS



Exercise 18.2.15. Consider the following function definition:

;; extractl : inventory -> inventory
;7 to create an inventory from an-inv for all
;; those items that cost less than $1
(define (extractl an-inv)
(cond
[ (empty? an-inv) empty]
[else (cond
[ (<= (ir-price (first an-inv)) 1.00)
(cons (first an-inv) (extractl (rest an-inv)))]
[else (extractl (rest an-inv))])]))

Both clauses in the nested cond-expression extract the first item from an-inv and both compute
(extractl (rest an-inv)).

Introduce a local-expression for these expressions.

18.3 Lexical Scope and Block Structure

The introduction of 1ocal requires some additional terminology Concermng the syntax of
Scheme and the structure of functions. Specifically, we need words to dls‘cﬁss the usage of names
for variables, functions, and structures. For a simple exampl <consider the‘{fgllowing two

definitions:

(define (f x) (+

(define (g x) (* 12

Clearly, the underlined occurr ompletely unrelated to the occurrences of x in
g. As mentioned before if wi ystematlcally replaced the underlined occurrences with y, the
function would still compute the exact same numbers. In short, the underlined occurrences of x
mean something only in the deﬁn /,10nrof £ and nowhere else.

At the same time, the first occurrence of x is different from the others. When we apply £ to a
number n, this occurrence completely disappears; in contrast, the others are replaced with n. To
distinguish these two forms of variable occurrences, we call the one to the right of the function
name BiNDING occurrence of x and those in the body the Bounp occurrences of x. We also say that
the binding occurrence of x binds all occurrences of x in the body of £, and from the discussion
above, the body of f is clearly the only textual region of the function where the underlined
binding occurrence of x can bind other occurrences. The name of this region is x'S LEXICAL SCOPE.
We also say that the definitions of £ and g (or other definitions in the befinitions window)
have GLoBaL scope. On occasion, people also use the word FREE OCCURRENCE.

The description of an application of f to a number n suggests the following pictorial
representation of the definition:

(define (f x (+ (* + ) 25))

-233-

X -
FlyHeart.com

TEAM FLY PRESENTS



The bullet over the first occurrence indicates that it is a binding occurrence. The arrow that
originates from the bullet suggests the flow of values. That is, when the value of a binding
occurrence becomes known, the bound occurrences receive their values from there. Put
differently, when we know which is the binding occurrence of a variable, we know where the
value will come from during an evaluation.

Along similar lines, the scope of a variable also dictates where we can rename it. If we wish to
rename a parameter, say, from x to y, we search for all bound occurrences in the scope of the
parameter and replace them with y. For example, if the function definition is the one from above:

(define (f x) (+ (* x x) 25))
renaming x to y affects two bound occurrences:
(define (f y) (+ (* y y) 25))
No other occurrences of x outside of the definitions need to be changed.

Obviously function definitions also introduce a binding occurrence for the function name. If a
definition introduces a function named £, the scope of £ is the entire/s‘equ?nce of definitions:

[define (e 2] (f (+zz)))
[dﬂhmflxﬂ}[rxx]zm]

[dﬂhm[gy]H—&[+1;U]&[—y1]”

That is, the scope of £ include bove énd below the definition of £.

Exercise 18.3.1. Here is a simple S :g;rﬁe program:

(define (pl x vy)
(+ (* x vy)

(+ (* 2 %)

(+ (* 2 y) 22))))

(define (p2 x)
(+ (* 55 x) (+ x 11)))

(define (p3 x)
(+ (pl x 0)
(+ (p1 x 1) (P2 x))))

Draw arrows from p1's x parameter to all its bound occurrences. Draw arrows from p1 to all
bound occurrences of p1.

Copy the function and rename the parameter x of p1 to a and the parameter x of p3 to b.

Check the results with DrScheme's check Syntax button.

-234-

X -
FlyHeart.com

TEAM FLY PRESENTS



In contrast to top-level function definitions, the scope of the definitions in a 1ocal are limited.
Specifically, the scope of local definitions is the local-expression. Consider the definition of an
auxiliary function f in a local-expression. It binds all occurrences within the local-expression but
none that occur outside:

1a ([P aaql aaa
local [ [define jez) if [+z z)))
_ 1

(define (f x) (4 (+x x) 25))

?ne (g) (+ (F (+ 3 1) (F (= v 1))
RN | P P

19 [[Paoal aaa

The two occurrences outside of local are not bound by the local definition of f.

As always, the parameters of a function definition, local or not, is only bound in the function's
body and nowhere else: (]

local [ (define (f x) [+ [1._:.- .:.-] 23]

LX)

function:
[define [f x)
20 o)

In the case of a local definition, the box is drawn aorund the entire local-expression:

(defne [ z)
(local ((define (f x) [+ [+ x x) 35))
idefine (g 1) [+ (f ) 100))
if =1

)

In this example, the box describes the scope of the definitions of £ and g.

Using a box for a scope, we can also easily understand what it means to reuse the name of
function inside a local-expression:

-235-

X -
FlyHeart.com

TEAM FLY PRESENTS



[define (a-funchion i)

(local ((define (f x y) (4 (+ x ) (4 x 1))
[define (g z)

local ((defne (f x) (+ [+ x x)55))
(define (g ) (+ f ¥) 100))

If =1} ]
(define (i x) (f x (zxi))
(fr vl )

The inner box describes the scope of the inner definition of £; the outer box is the scope of the
outer definition of £. Accordingly, all occurrences of £ in the inner box refer to the inner local;
all those in the outer box refer to the definition in the outer local. In other words, the scope of
the outer definition of £ has a hole: the inner box, which is the scope of the inner definition of f.

Holes can also occur in the scope of a parameter definition. Here is an example:

[define [f x)

(local ((define (g )| (+ x («x 2)) [) |
g x]) I

[
In this function, the parameter x is used twice: for the function £ and for g. The scope of the
latter is nested in the scope of the former and is thus a hole for the scopé*of\the outer use of x.

In general, if the same name occurs more than once in‘a function, the boxes that describe the
correspondlng scopes never overlap. In some cases\_ ! ¢s are nested within each other, which
gives rise to holes. Still, the picture is always 'Lhat o ahlerarchy of smaller and smaller nested
boxes. ~

Exercise 18.3.2. Here is a si /plé?s&phe\ ne function:

;7 sort : liSt// 1ist-of-numbers
(define (sort alon)

(local ((define\ (sort alon)

(cond N
[ (empty? alon) empty]
[ (cons? alon) (insert (first alon) (sort (rest alon)))]))
(define (insert an alon)
(cond
[ (empty? alon) (list an)]
[else (cond
[(> an (first alon)) (cons an alon)]
[else (cons (first alon) (insert an (rest alon)))])]1)))

(sort alon)))

Draw a box around the scope of each binding occurrence of sort and alon. Then draw arrows
from each occurrence of sort to the matching binding occurrence.

Exercise 18.3.3. Recall that each occurrence of a variable receives its value from the
corresponding binding occurrence. Consider the following definition:

(define x (cons 1 X))

-236-

X -
FlyHeart.com

TEAM FLY PRESENTS



Where is the underlined occurrence of x bound? Since the definition is a variable definition and
not a function definition, we need to evaluate the right-hand side if we wish to work with this
function. What is the value of the right-hand side according to our rules?

* As we evaluate expressions in this manner, our list of definitions grows longer and longer.
Fortunately, DrScheme knows how to manage such growing lists. Indeed, it occasionally throws
out definitions that will never be used again.

-237-

X -
FlyHeart.com

TEAM FLY PRESENTS



Abstracting Designs

-238-

Part IV

= <
FlyHeart.com

TEAM FLY PRESENTS



Section 19

Similarities in Definitions

Many of our data definitions and function definitions look alike. For example, the definition for a
list of symbols differs from that of a list of numbers in only two regards: the name of the class of
data and the words *“symbol" and " ‘number." Similarly, a function that looks for a specific
symbol in a list of symbols is nearly indistinguishable from one that looks for a specific number
in a list of numbers.

Repetitions are the source of many programming mistakes. Therefore good programmers try to
avoid repetitions as much as possible. As we develop a set of functions, especially functions
derived from the same template, we soon learn to spot similarities. It is then time to revise the
functions so as to eliminate the repetitions as much as possible. Put differently, a set of functions
is just like an essay or a memo or a novel or some other piece of writing: ﬂie first draft is just a
draft. Unless we edit the essay several times, it does not express our- 1deas\01early and concisely.
It is a pain for others to read it. Because functions are read by many other people and because
real functions are modified after reading, we must learn to"> d"\" functlons

The elimination of repetitions is the most important si e (program) editing process. In this
section, we discuss similarities in function definitior nc in data definitions and how to avoid
them. Our means of avoiding similarities are spectﬁc to Scheme and functional programming
languages; still, other languages, in partwular object-oriented ones, support similar mechanisms

for factoring out similarities ---or (code) patte ns as they are somtimes called.

19.1 Similarities in Functlons

The use of our design recipes entirely determines a function's template -- or basic organization --
from the data definition for the input. Indeed, the template is an alternative method of expressing
what we know about the input data. Not surprisingly, functions that consume the same kind of
data look alike.

;; contains-doll? : los -> ;; contains-car? : los ->
boolean boolean
;; to determine whether alos ;; to determine whether alos
contains contains
;; the symbol 'doll ;; the symbol 'car
(define (contains-doll? alos) (define (contains-car? alos)
(cond (cond
[ (empty? alos) false] [ (empty? alos) false]
[else [else
(cond (cond
[ (symbol=? (first alos) [ (symbol=? (first alos) 'car)
'doll) true]
true] [else
[else (contains-car? (rest
(contains-doll? (rest alos))1)1))
-239-
—

FlyHeart.com ¢4

TEAM FLY PRESENTS



alos))])1))

Figure 52: Two similar functions

Take a look at the two functions in figure 52, which consume lists of symbols (names of toys)
and look for specific toys. The function on the left looks for 'do11, the one on the right for 'car
in a list of symbols (los). The two functions are nearly indistinguishable. Each consumes lists of
symbols; each function body consists of a cond-expressions with two clauses. Each produces
false if the input is empty; each uses a second, nested cond-expression to determine whether
the first item is the desired item. The only difference is the symbol that is used in the comparison
of the nested cond-expression: contains-dol1? uses 'doll and contains-car? uses 'car, of
course. To highlight the differences, the two symbols are boxed.

Good programmers are too lazy to define several closely related functions. Instead they define a
single function that can look for both a 'do11 and a 'car in a list of toys. This more general
function consumes an additional piece of data, the symbol that we are looking for, but is
otherwise like the two original functions:

;; contains? : symbol los -> boolean o~
;; to determine whether alos contains the Symbol s
(define (contains? s alos) \
(cond
[ (empty? alos) false]
[else (cond
[ (symbol=? (first alos)
true] )
[else
(contains? s

We can now look for 'do11 pplylng contalns7 to 'dol11 and a list of symbols. But
contains? works for any other ymbol too. Defining the single version has solved many related
problems at once. \

The process of combining two related functions into a single definition is called FuncTioNaL
assTrRACTION. Defining abstract versions of functions is highly beneficial. The first benefit is that a
single function can perform many different tasks. In our first example, contains? can search for

many different symbols instead of just one concrete symbol.*
;; below : lon number -> lon ;; above : lon number -> lon
;; to construct a list of those ;; to construct a list of those
numbers numbers
;; on alon that are below t ;; on alon that are above t
(define (below alon t) (define (above alon t)
(cond (cond
[ (empty? alon) empty] [ (empty? alon) empty]
[else [else
(cond (cond
[ (£ (first alon) t) [(> (first alon) t)
(cons (first alon) (cons (first alon)
(below (rest alon) t))] (above (rest alon) t))]
[else [else
(below (rest alon) t)])])) (above (rest alon) t)])]))

-240-

X -
FlyHeart.com

TEAM FLY PRESENTS



Figure 53: Two more similar functions

In the case of contains-dol1? and contains-car?, abstraction is uninteresting. There are,
however, more interesting cases: see figure 53. The function on the left consumes a list of
numbers and a threshold and produces a list of all those numbers that are below the threshold;
the one on the right produces all those that are above a threshold.

The difference between the two functions is the comparison operator. The left uses <, the right
one >. Following the first example, we abstract over the two functions with an additional
parameter that stands for the concrete relational operator in below and above:

(define (filterl rel-op alon t)
(cond
[ (empty? alon) empty]
[else (cond
[ (rel-op (first alon) t)
(cons (first alon)
(filterl rel-op (rest alon) t))]
[else ]
(filterl rel-op (rest alon) t)])1))

To apply this new function, we must supply three argumen ca clational Gﬁerator R that
compares two numbers, a list L of numbers, and a num;ber Ihe\:\f\ungtign then extracts all those
items i in L for which (R i N) evaluates to true. Since we do not know how to write down

(filterl < em
= empty

So next we look at a slightly more complicated case:

(filterl < (cons 4 empty) 5)
The result should be (cons 4 empty) because the only item of this list is 4 and (< 4 5) is true.

The first step of the evaluation is based on the rule of application:

(filterl < (cons 4 empty) 5)

= (cond
[ (empty? (cons 4 empty)) empty]
[else (cond
[ (< (first (cons 4 empty)) 5)
(cons (first (cons 4 empty))
(filterl < (rest (cons 4 empty)) 5))]
[else (filterl < (rest (cons 4 empty)) 5)1)1)

241-

X -
FlyHeart.com

TEAM FLY PRESENTS



That is, it is the body of £i1ter1 with all occurrences of rel-op replaced by <, t replaced by 5,
and alon replaced by (cons 4 empty).

The rest of the evaluation is straightforward:

(cond
[ (empty? (cons 4 empty)) empty]
[else (cond
[(< (first (cons 4 empty)) 5)
(cons (first (cons 4 empty))
(filterl < (rest (cons 4 empty)) 5))]
[else (filterl < (rest (cons 4 empty)) 5)1)]1)

= (cond
[(< (first (cons 4 empty)) 5)
(cons (first (cons 4 empty))
(filterl < (rest (cons 4 empty)) 5))]
[else (filterl < (rest (cons 4 empty)) 5)1])

= (cond
[(< 4 5) (cons (first (cons 4 empty))
(filterl < (rest (cons 4 empty)) 5)){]
[else (filterl < (rest (cons 4 empty)) 5)]) . | |

= (cond
[true (cons (first (cons 4 empty)) //
(filterl < (rest (cons 4 empty
[else (filterl < (rest (cons 4 emptj&}\/*

= (cons 4 (filterl < (rest (con§?§\¢m v
(cons 4 (filterl < empty jQQ
= (cons 4 empty) ) AN,

/

The last step is the equation Wedlscussed as &fﬁrst case.

Our final example is an application of ilter1 to a list of two items:

(filterl < (cons ‘6 (cons 4 empty)) 5)
(filterl < (cons 4 empty) 5)

(cons 4 (filterl < empty 5))

(cons 4 empty)

The only new step is the first one. It says that fi1ter1 determines that the first item on the list is
not less than the threshold, and that it therefore is not added to the result of the natural recursion.

Exercise 19.1.1. Verify the equation

(filterl < (cons 6 (cons 4 empty)) 5)
= (filterl < (cons 4 empty) 5)

with a hand-evaluation that shows every step.

Exercise 19.1.2. Evaluate the expression

(filterl > (cons 8 (cons 6 (cons 4 empty))) 5)

242-

= _—
FlyHeart.com

TEAM FLY PRESENTS



by hand. Show only the essential steps.

The calculations show that (filterl < alon t) computes the same result as (below alon t),
which is what we expected. Similar reasoning shows that (filterl > alon t) produces the
same output as (above alon t). So suppose we define the following:

;; belowl : lon number -> lon ;; abovel : lon number -> lon
(define (belowl alon t) (define (abovel alon t)
(filterl < alon t)) (filterl > alon t))

Clearly, belowl produces the same results as be1ow when given the same inputs, and abovel is
related to above in the same manner. In short, we have defined below and above as one-liners
using filterl.

Better yet: once we have an abstract function like filterl, we can put it to other uses, too. Here
are three of them:

I. (filterl = alon t): This expression extracts all those numbers in alon that are equal
to t.

2. (filterl <= alon t): This one produces the list of numbers in alon that are less than
or equal to t. o~ “ f

3. (filterl >= alon t): This last expression computes the list of numbers that are
greater than or equal to the threshold. N \

In general, £ilter1's first argument need not even b \ n fSc emeffs"predeﬁned operations; it
can be any function that consumes two numbers and produces a boolean value. Consider the
following example: . ’

;5 squared>? : numbe
(define (squared>°
(> (* x x) ¢

The function produces tr ;“é\\whéneVer the area of a square with side x is larger than some
threshold c, that is, the function tests whether the claim x* > ¢ holds. We now apply filterl to
this function and a list of numbers:

(filterl squared>? (list 1 2 3 4 5) 10)

This particular application extracts those numbers in (1ist 1 2 3 4 5) whose square is larger
than 10.

Here is the beginning of a simple hand-evaluation:

(filterl squared>? (list 1 2 3 4 5) 10)
= (cond
[ (empty? (list 1 2 3 4 5)) empty]
[else (cond
[ (squared>? (first (list 1 2 3 4 5)) 10)
(cons (first (list 1 2 3 4 5))
(filterl squared>? (rest (list 1 2 3 4 5)) 10))]
[else
(filterl squared>? (rest (list 1 2 3 4 5)) 10)1)1)

-243-

X -
FlyHeart.com

TEAM FLY PRESENTS



That is, we apply our standard law of application and calculate otherwise as usual:

= (cond
[ (squared>? 1 10)
(cons (first (list 1 2 3 4 5))
(filterl squared>? (rest (list 1 2 3 4 5)) 10))]
[else
(filterl squared>? (rest (list 1 2 3 4 5)) 10)1])
= (cond
[false
(cons (first (list 1 2 3 4 5))
(filterl squared>? (rest (list 1 2 3 4 5)